Update

=
-,

Relational Database Management System for MS-DOSe

Information in this document is subject to change without notice. Companies, names,
and data used in examples herein are fictitious unless otherwise noted. No part of this
document may be reproduced or transmitted in any form or by any means, electronic or
mechanical, for any purpose, without the express written permission of Microsoft
Corporation.

© 1989-1993 Microsoft Corporation. All rights reserved.

Microsoft, the Fox Head logo, FoxBASE+, FoxPro, MS, MS-DOS, and Multiplan are
registered trademarks and Windows is a trademark of Microsoft Corporation in the
United States of America and other countries.

Paradox is a registered trademark of Ansa Software, a Borland company.
Macintosh is a registered trademark of Apple Computer, Inc.

dBASE III PLUS, dBASE IV, and RapidFile are registered trademarks and Framework II
is a trademark of Ashton-Tate Corporation.

Lotus, Symphony, and 1-2-3 are registered trademarks of Lotus Development
Corporation.

UNIX is a registered trademark of UNIX Systems Laboratories.

Document No. FX37550-1292
Printed in Ireland 10

Contents

Contents

FoxPro 2.5 New Features

Enhancements to the 32-Bit Product 1-2
Provides 225 Work Areas 1-2
Operates with DPMI-Compliant

Memory Managers 1-2

Support for Cross Platform Development 1-3

New or Enhanced Commands and Functions 1-4

New Generator Directives 1-41

New System Memory Variables 1-46

Quick Start

Some Navigation Aids 2-2

FoxPro Makes It Easy to Find Information 2-3

Three Steps toRQBE 2-5

Browsing a Database File 2-6

Turning Data into Information 2-7

Saved Queries Save You Time and Effort 2-9

Changing Queries IsEasy 2-10

Applications Can Make Tough Jobs Simple 2-11

It’s Easy to Get Just the Data You Want 2-13

“Quick Reports” Really Are Quick and Easy 2-15

Letting the Report Writer Work for You 2-17

Even Multi-File Reports Are Easy 2-19

Grouping and Subtotaling in RQBE 2-21

One Last Pass with the Report Writer 2-23

Data Editing and Entry—Your First Application . 2-25

Where Do You Go From Here? 2-27

Using Files From Other Platforms

Cross Platform Glossary 3-3
Running MS-DOS Applications in Windows 3-4
Approach 1:
Running an MS-DOS Application AsIs 3-6
Approach 2:
Transporting MS-DOS Applications 3-12
Approach 3:

Taking Full Advantage of Windows Features 3-17

ii

Using Files From Other Platforms (cont)

Maintaining Cross Platform Files 3-19
Maintaining Platform Screens 3-19
Maintaining Cross Platform Reports 3-23
Maintaining Cross Platform Labels 3-24
Maintaining Cross Platform Menus 3-24

Running Windows Applications in MS-DOS 3-26

Transporter — How Does It Work? 3-27
Transport Dialog 3-27
Special Transporter Decisions 3-28

Choosing a Development Platform 3-29
Character Mode MS-DOS Platform 3-29
Graphical Windows Platform 3-29

Tables

File Types and Extensions 4-2

System Capacities 4-4

Control Key Shorteuts 4-6

Table Structures 4-7

.PJX Table (Projects) 4-8

.SCX Table (Screens) 4-10

SCX Table (Continued) 4-12

.FRX Table (Reports) 4-14

-MNX Table Menus) 4-18

.LBX Table (Labels) 4-19

Table File Structure (DBF) 4-20

Memo and General File Structure (FPT) 4-22

Index File Structure (IDX) 4-23

Compact Index File Structure (IDX). 4-26

Compound Index File Structure (.CDX) 4-29

FoxPro 2.0 Project File Structure (.PJX) 4-30

FoxPro 2.0 Screen File Structure (.SCX) 4-32

FoxPro 2.0 Report File Structure (FRX) 4-34

FoxPro 2.0 Label File Structure (LBX) 4-36

FoxPro 1.x Report File Structure (FRX) 4-37

FoxPro 1.x Label File Structure (LBX) 4-40

FoxBASE+ Memo File Structure (.DBT) 4-41

FoxPro Macro File Format (FKY) 4-42

Contents

1 FoxPro 2.5 New Features
ST

New Features

Microsoft® FoxPro® 2.5 for MS-DOS® is faster than FoxPro 2.0 and
contains these new features and enhancements:

Expanded support for the 32-bit product (see the Enhance-
ments to the 32-Bit Product section)

Support for the development of cross platform applications
(see the Cross Platform Development section)

‘Support for importing Microsoft Excel 3.0, Microsoft Excel 4.0,
Paradox® 3.5 and Paradox 4.0 files (see the IMPORT and
APPEND FROM commands in the New or Enhanced Commands
and Functions section)

An expanded record size that includes up to 65,000 bytes per
record

New or enhanced commands and functions (see the New or
Enhanced Commands and Functions section)

New generator directives (see the New Generator Directives
section)

New system memory variables (see the New System Memory
Variables section)

This chapter describes these features in detail.

FoxPro 2.0 screen, report, label, menu and project files are
not compatible with FoxPro 2.5 format. When you first open
files of these types, FoxPro 2.5 converts them to FoxPro 2.5
format (with your permission). For more information about
FoxPro 2.5 file formats, see the Tables chapter.

Library files created with the FoxPro 2.0 Library Construc-
tion Kit cannot be used in FoxPro 2.5. To use them with
FoxPro 2.5, you must first update them. For details about
updating your libraries, contact the vendor that provides
them.

Additionally, programs compiled under FoxPro 2.0, such as
APPs and .FXPs, are not compatible with FoxPro 2.5. To run
such programs in FoxPro 2.5, you must rebuild them. For
more information about rebuilding FoxPro 2.0 applications,
see the Using Files From Other Platforms chapter.

1-1

Enhancements to the 32-Bit Product

1-2

The 32-bit products offers 225 work areas and operates with DOS
Protected Mode Interface (DPMI) memory managers. The following
sections describe these enhancements.

Provides 225 Work Areas

FoxPro 2.5 features 225 work areas. With so many work areas, you
can open many databases. This enhances the performance of ap-
plications that use many databases, because you can leave the
databases open instead of closing and reopening them frequently.

Operates with DPMI-Compliant Memory Managers

FoxPro 2.5 works with DPMI-compliant memory managers, such as
Microsoft Windows™. If you use a DPMI memory manager, you can
control the physical memory that FoxPro uses by specifying the
MEMLIMIT option in your CONFIG.FP file.

The syntax for MEMLIMIT is:
MEMLIMIT = <percent>[, <minimums, <raximims]
where:

<percent> is the percent of available physical memory that you
want FoxPro to use.

<minimum> is the minimum amount of memory required, expressed
in kilobytes (K).

<maximum> is the maximum amount of memory required, ex-
pressed in kilobytes (K).

The minimum and maximum values are optional, but if you specify
a maximum value you must also specify a minimum.

New Features

Support for Cross Platform Development

New Features

FoxPro version 2.5 allows you to create and maintain applications
that run on multiple platforms, such as Windows and MS-DOS. An
application that can run on multiple platforms is a cross platform
application.

With cross platform applications, you can run an application on
multiple platforms and share data with full record locking and other
multi-user capabilities. For information about cross platform ap-
plication development, refer to the Using Files From Other Plat-
forms chapter.

1-3

New or Enhanced Commands and Functions

1-4

In version 2.5, the following commands and functions are new or
enhanced:

APPEND FROM — Appends files from Microsoft Excel 3.0,
Microsoft Excel 4.0, Paradox 3.5 and 4.0 to FoxPro tables.

#DEFINE ... #UNDEF — Creates and releases compile-time con-
stants.

GETDIR() — Displays the Select Directory dialog.

#IF ... #ENDIF — Conditionally includes source code at compile
time.

IMPORT — Imports files from Microsoft Excel 3.0, Microsoft
Excel 4.0, Paradox 3.5 and 4.0.

MOVE WINDOW — Includes the CENTER clause that centers a
window on the desktop or in a parent window.

SELECT - SQL — Sends query results to a Browse window by
default and includes the NOWAIT, PREFERENCE, and TO
SCREEN clauses.

SET DEVELOPMENT — Permits you to cancel program execu-
tion during a READ operation.

SHOW WINDOW — Includes the REFRESH clause for updating
memo editing windows.

SYS(20) — Transforms German text.

USE — Supports using 0 as a work area and includes the

SHARE clause that opens a table/DBF for shared use on a net-
work.

These language changes are described in the following sections and
in the online help file.

New Features

APPEND FROM

Purpose

Syntax

See Also

Adds records from another file to the end of the current table/.DBF.

APPEND FROM <file> | ?
[FIELDS <field list>]
[FOR <expL>]

[[TYPE] [DELIMITED [WITH TAB | WITH <delimiter> | WITH BLANK]
| DIF | FW2 | MOD | PDOX | RPD | SDF | SYLK
| WK1 1 WK3 1 WKS | WR1|WRKIXLS]]

COPY FILE, COPY TO, IMPORT, EXPORT

Description The file you are appending from is assumed to be a FoxPro table

Clauses

New Features

with a .DBF extension. If the file you want to append from is a
FoxPro table and doesn’t have a .DBF extension, you must specify its
extension. If the file is a not a FoxPro table, you must specify the
type of file you append from.

Before you can append from a table created in dBASE v® that con-
tains a memo field, you must first open the table in FoxPro with
USE. You are prompted with “Convert MEMO file to FoxPro For-
mat?” Choose Yes.

If you append from a FoxPro table, the table you append from can
be open in another work area. You can also append from a table
that isn’t open but is available on disk and a shared table opened
when SET EXCLUSIVE is OFF. When the table you append from con-
tains records marked for deletion, the records are not marked for
deletion after they are appended.

If you include the ? clause instead of including a table name, the
Open dialog appears so you can choose a table to append from.
<file>

Specify the name of the file to append from with <file>. If you don’t
include a file name extension, the default extension .DBF is
assumed.

FIELDS <field list>

APPEND FROM supports an optional <field list>. Data is only ap-
pended to the fields specified in the field list.

1-5

1-6

FOR <expL>

The entire source file is appended to the table unless you include
the FOR clause. If the FOR clause is included, a new record is ap-
pended for each record in the file source for which <expL> evaluates
to a logical true (.T.). Records are appended until the end of the file
is reached.

TYPE

If the file you are appending from isn’t a FoxPro table, you must
specify the file TYPE. Although you must specify the file type, you
need not include the key word TYPE. You can append from a wide
variety of different file types including DELIMITED ASCII text files in
which you can specify a field delimiter.

If the file you are appending from doesn’t have the usual default file
extension for that type of file, the source file name must include the
file’s extension. For example, Microsoft Excel spreadsheets normal-
ly have an XLS file name extension. If the spreadsheet you are
appending from has an extension other than the expected XLS, be
sure to specify the extension.

When appending from a spreadsheet, the data in the spread-
sheet must be stored in a row major order rather than a
column major order. This allows the appended spreadsheet
data to match the table structure.

DELIMITED [WITH TAB | WITH <delimiter> | WITH BLANK]

A DELIMITED file is an ASCII text file in which each record ends with
a carriage return and line feed. Field contents are by default as-
sumed to be separated from each other by commas, and character
field values to be additionally delimited by double quotation marks.
For example:

'’Smith’’, 9999999, ' ’'TELEPHONE'’

The DELIMITED WITH TAB option can be used to specify files which
contain fields separated from each other by tabs rather than com-
mas. The DELIMITED WITH <delimiter> option can be used to indi-
cate that character fields are delimited by a character other than
the quotation mark. The DELIMITED WITH BLANK option can be
used to specify files which contain fields separated by spaces instead
of commas. The file extension is assumed to be .TXT for all
delimited files.

New Features

New Features

You can import dates from delimited files if the dates are in proper
date format. The date format defaults to ‘mm/dd/yy’. Including the
century portion of a date is optional. FoxPro will import a date that
includes the century. If the century isn’t included in a date (for
example ’12/25/92’), the Twentieth century is assumed. Date
delimiters can be any non-numeric character except the delimiter
that separates the fields in the delimited file.

Dates in other formats can be imported if their format matches a
date format available in SET DATE. To import dates that are not in
the default format, issue SET DATE with the proper date format
before using APPEND FROM. To test if a date format can be success-
fully imported, use it with CTOD(). If the date is acceptable to
CTOD(), the date will import properly.

DIF

In a DIF (VisiCalc Data Interchange Format) file, vectors (columns).
become fields and tuples (rows) become records. DIF file names are
assumed to have a .DIF extension.

FW2

FW2 files are created by Framework II™. FW2 file names are as-
sumed to have a .FW2 extension.

MOD

MOD files are created by Microsoft Multiplan® version 4.01. MOD
files are assumed to have a .MOD extension.

PDOX

Database files in Paradox versions 3.5 and 4.0 can be appended to a
FoxPro table by including the PDOX option. Paradox file names are
assumed to have a .DB extension.

RPD
RPD files are created by RapidFile® version 1.2. RPD file names are
assumed to have an RPD extension.

SDF

An SDF (System Data Format) file is an ASCII text file in which .
records have a fixed length and end with a carriage return and a
line feed. Fields are not delimited. The file name extension is as-
sumed to be .TXT for SDF files.

1-7

1-8

SYLK

An SYLK file is in a Symbolic Link interchange format (used in
Microsoft Multiplan) in which columns become fields and rows be-
come records. SYLK file names have no extension by default.

WK1

Data from a Lotus® 1-2-3% spreadsheet can be appended to a
FoxPro table with this option. Each column from the spreadsheet
becomes a field in the table; each spreadsheet row becomes a record
in the table. A WK1 file name extension is assigned to a spread-
sheet created in Lotus 1-2-3 revision 2.x.

WK3

Data from a Lotus 1-2-3 spreadsheet. Each column from the
spreadsheet becomes a field in the table; each spreadsheet row be-
comes a record in the table. A .WK3 file name extension is assigned
to a spreadsheet created in Lotus 1-2-3 revision 3.x.

WKS

Data from a Lotus 1-2-3 spreadsheet. Each column from the spread-
sheet becomes a field in the table and each spreadsheet row be-
comes a record in the table. A .WKS file name extension is assigned
to a spreadsheet created in Lotus 1-2-3 revision 1-A.

WR1

Data from a Lotus Symphony® spreadsheet. Each column from the
spreadsheet becomes a field in the table and each spreadsheet row
becomes a record in the table. A WR1 file name extension is as-
signed to a spreadsheet created in Symphony versions 1.1 or 1.2.

WRK

Data from a Lotus Symphony spreadsheet. Each column from the
spreadsheet becomes a field in the table and each spreadsheet row
becomes a record in the table. A WRK file name extension is as-
signed to a spreadsheet created in Symphony version 1.0.

XLS

The data in Microsoft Excel versions 2.0, 3.0 and 4.0 spreadsheets
can be appended to a FoxPro table by including the XLS option.
Each column from the spreadsheet becomes a field in the table and
each spreadsheet row becomes a record in the table. Spreadsheet
files created in Microsoft Excel are given an XLS file name exten-
sion.

New Features

Example

New Features

In this example, CUSTOMER.DBF is opened, its structure is copied to
a table called BACKUP and BACKUP is opened. FoxPro then appends
all records from CUSTOMER.DBF from the state of Ohio (OH). These
records are then copied to a new delimited file called TEMP.TXT.

CLOSE DATARASES

USE customer

COPY STRUCTURE TO lackup

USE backup

APPEND FROM customer FOR state = ‘OH’
COPY TO tamp TYPE DELIMITED

MODIFY FILE teamp.txt

USE

DELETE FILE backup.dbf

DELETE FILE temp.txt

#DEFINE

... #UNDEF

Purpose

Syntax

See Also

Creates and releases compile-time constants

#DEFINE <constant name> <expr>

#UNDEF <constant name>

COMPILE, #IF ... #ENDIF

Description

Clauses

The #DEFINE and #UNDEF preprocessor directives are used to create
compile-time constants in programs. By creating constants with
#DEFINE instead of using system memory variables, you can reduce
memory consumption, increase performance and simplify programs.

To create a constant with #DEFINE, specify the constant’s name with
<constant name> and its value with <expr>. When the program is
compiled, text substitution is performed and the constant value ex-
pression is substituted for the constant name wherever it appears in
the program. You can stop the substitution for the constant by issu-
ing #UNDEF.

Substitution occurs only in program lines that follow the #DEFINE
statement that creates the constant and that precede the #UNDEF
statement for that constant. The constant is available only to the
program that creates the constant.

<constant name>

To create a compile-time constant with #DEFINE, specify its name
with <constant name>. The constant name must be a legitimate
FoxPro name that begins with a letter or an underscore and consists
of up to 10 letters, digits or underscores. To improve program
readability and simplify debugging, use a standard naming conven-
tion for your constant names.

Don’t use FoxPro key words for constant names.

To stop text substitution for a constant created with #DEFINE, issue
#UNDEF <constant name>.

New Features

Example

New Features

<expr>

Specify the value of the compile-time constant with <expr>. <expr>
can be a name or an expression that evaluates to a character,
numeric, date or logical value.

The following program creates a compile-time constant named
MAXITEMS. This constant is used in a FOR ... NEXT loop to display
the numbers 1 through 10.

#DEFINE maxitems 10
FOR i = 1 TO maxitems

? 1
NEXT

GETDIR()

Purpose Displays the Select Directory dialog

Syntax GETDIR([<expC1> [, <expC2>]])

Parameters | <expCl> The directory initially selected

<expC2> The prompt displayed at the top of the dialog

Returns Character

See Also GETEXPR

Description GETDIR() displays the Select Directory dialog from which a direc-
tory can be chosen. GETDIR() returns the name of the directory you
choose as a character string.
If you do not choose a directory (you choose Cancel or press Escape),
GETDIR() returns the null string.

Parameters <expC1>

Use <expCl> to specify the directory that is initially displayed in
the Select Directory dialog. When <expCl> is not specified, the
Select Directory dialog opens with the default directory displayed.

<expC2>

The prompt for the directory list in the Select Directory dialog is
specified with <expC2>.

New Features

#IF ... #ENDIF

Purpose

Syntax

See Also

Conditionally includes source code at compile time

#IF <expN1> | #IF <expL1>
<statements>

[#ELIF <expN2> | #ELIF <expL2>
<statements>

#ELIF <expNn> | #ELIF <expLn>
<statements>]

[#ELSE
<statements>]

#ENDIF

COMPILE, #DEFINE ... #UNDEF

Description

Clauses

New Features

The #IF ... 4ENDIF preprocessor directives let you conditionally in-
clude source code in a compiled program. #IF ... #ENDIF can improve
the readability of source code, reduce compiled program size and
improve performance in some cases.

When the #IF ... 4ENDIF structure is compiled, successive logical or
numeric expressions within the structure are evaluated; the evalua-
tion results determine which set of FoxPro statements (if any) are
included in the compiled code.

#IF <expN1> | #IF <expLi>
<statements>

The numeric expression <expN1> or logical expression <expLl> is
evaluated. If the expression is numeric and non-zero or the expres-
sion is logical and true (.T.), the statements immediately following
#IF are included in the compiled code. The #IF ... #ENDIF structure
is exited, and the first program line following #ENDIF is then com-
piled.

If the expression following #IF is numeric and O or logical and false
(.F.), the statements immediately following #IF are not included in
the compiled code. In this case, any following #ELIF directives are
evaluated.

Example

[#ELIF <expN2> | #ELIF <expL2>
<statements>

#ELIF <expNn> | #ELIF<expLn>
<statements>]

If <expN1> is O or <expLl> is false, the #ELIF directives are then
evaluated. The first #ELIF expression <expN2> or <expL2>, if
present, is evaluated. If <expN2> is non-zero or <expL2> is true,
the statements immediately following #ELIF are included in the com-
piled code. The #IF ... #ENDIF structure is exited, and the first pro-
gram line following #ENDIF is then compiled.

If <expN2> is 0 or <expL2> is false, the statements following #ELIF
are not included in the compiled code, and the next #ELIF directive
is evaluated.

[#ELSE
<statements>]

If no #ELIF directives are included or if those that are included
evaluate to 0 or false, the presence or absence of #ELSE determines
whether any additional statements are included in the compiled
code:

¢ If 4ELSE is included, the statements following #ELSE are in-
cluded in the compiled code.

e If #ELSE isn’t included, none of the program statements be-
tween #IF and #ENDIF is included in the compiled code. The
#IF ... #ENDIF structure is exited, and compilation continues
on the first program line following #ENDIF.

In the following example, the #IF ... #ENDIF structure determines
which version of FoxPro compiles the program and then displays the
appropriate message.

#IF "WINDOWS’ S UPPER (VERSION())
? 'This is FoxPro for Windows’
#ELIF 'MAC’ $ UPPER(VERSION())
? 'This is FoxPro for Mac’
#ELIF 'UNIX’ $ UPPER (VERSION())
? 'This is FoxPro for UNIX’
#ELSE
? 'This is FoxPro for DOS’
#ENDIF

New Features

IMPORT

Purpose Imports data in an external file format to create a new FoxPro
table/.DBF
Syntax IMPORT FROM <file>
[TYPE] FW2 | MOD | PDOX | RPD
| WK1 | WK3 | WKS | WR1 | WRK | XLS
See Also APPEND FROM, COPY TO, EXPORT
Description Most software packages store their data in a file format that cannot
be opened directly in FoxPro. IMPORT creates a new FoxPro
table/DBF from data stored in file formats that FoxPro cannot read.
A new table/.DBF is created with the same name as the file the data
is imported from. A DBF extension is assigned to the newly created
table/.DBF.
Clauses <file>

New Features

<file> is the name of the file to import data from. If you don’t in-
clude an extension with the file name, the default extension for the
specified file type is assumed.

TYPE

The key word TYPE is optional, but you must include one of the
following file types described below.

FwW2
Include FW2 to import FW2 files, created by Framework II.

MOD

Include MOD to import MOD files, created by Microsoft Multiplan
version 4.01.

PDOX

Include PDOX to import Paradox files. Database files in Paradox
versions 3.5 and 4.0 by Borland can be imported by including the
PDOX option.

RPD
Include RPD to import RPD files, created by RapidFile.

1-15

1-16

WK1 | WK3 | WKS

Include WK1 to import data from a Lotus 1-2-3 spreadsheet.
Columns from the spreadsheet become fields in the table/.DBF, and
the spreadsheet rows become records in the table/DBF. A WK1 ex-
tension is assigned to spreadsheets created in Lotus 1-2-3 revision
2.x; a WK3 extension is assigned to spreadsheets created in Lotus
1-2-3 revision 3.x; and a .WKS extension is assigned to spreadsheets
created in Lotus 1-2-3, revision 1-A.

WR1 | WRK

Include WR1 to import data from a Lotus Symphony spreadsheet.
Columns from the spreadsheet become fields in the table/.DBF, and
the spreadsheet rows become records in the table/DBF. A WR1 ex-
tension is assigned to spreadsheets created in Symphony version
1.10, and a .WRK extension is assigned to spreadsheets created in
Symphony version 1.01.

XLS

Include XLS to import data from Microsoft Excel spreadsheets ver-
sions 2.0, 3.0 and 4.0. Columns from the spreadsheet become fields
in the table/.DBF, and the spreadsheet rows become records in the
table/DBF. Spreadsheet files created in Microsoft Excel have an
XLS extension.

New Features

MOVE WINDOW

Purpose Moves a window to a specified screen location
Syntax MOVE WINDOW <window name> TO <row, column>
| BY <expN1>, <expN2>
[CENTER]

See Also ACTIVATE WINDOW

Description Use MOVE WINDOW to move a user-defined or system window to a
specified location on the desktop in FoxPro for MS-DOS, the main
FoxPro window in FoxPro for Windows or a user-defined window.
The window can be moved to a specific position or relative to its
current position. If a window is defined, it can be moved; it doesn’t
have to be active or visible.

Clauses <window name>

New Features

Specify the name of the window to move with <window name>.

TO <row, column>

Include this clause to specify the row and column coordinates to
move a window to on the desktop, the main FoxPro window or a
user-defined window.

BY <expN1>, <expN2>

Include this clause to move a window to a location relative to its
current position. The first numeric expression <expN1> specifies
the number of rows to move the window (down if <expN1> is posi-
tive, up if negative). The second numeric expression <expN2>
specifies the number of columns to move the window (to the right if
<expN2> is positive, to the left if negative).

CENTER

You can center a window on the desktop, the main FoxPro window,
or in a parent window by including CENTER.

Example

In this example, after the window menter is defined and activated,
the window is moved.

DEFINE WINDOW menter FROM 10,4 TO 15,54 SYSTEM ;
TITLE "Nomadic Window"

ACTIVATE WINDOW menter

WAIT WINDOW ‘Press ary key to move window’

MOVE WINDOW menter TO 20,15

WAIT WINDOW ‘Press ary key to release window’

RELEASE WINDOW menter

New Features

SELECT — SQL

Purpose

Syntax

See Also

Retrieves data from one or more table/.DBF

SELECT [ALL | DISTINCT]

[<alias>.]<select_item> [AS <column_name>]

[, [<alias>.]<select_item> [AS <column_name>] ...]
FROM <table> [<local_alias>] [, <table> [<local_alias>] ...]
[[INTO <destination>]

| [TO FILE <file> [ADDITIVE]

| TO PRINTER [PROMPT]

| TO SCREEN]]

[PREFERENCE <name>]

[NOCONSOLE]

[PLAIN]

[NOWAIT]

[WHERE <joincondition> [AND <joincondition> ...]

[AND | OR <filtercondition> [AND | OR <filtercondition> ...]]]
[GROUP BY <groupcolumn> [, <groupcolumn> ...]]
[HAVING <filtercondition>]

[UNION [ALL] <SELECT command>]
[ORDER BY <order_item> [ASC | DESC]
[, <order_item> [ASC | DESC]...]]

CREATE QUERY, CREATE TABLE — SQL, INSERT — SQL,
MODIFY QUERY, SET ANSI, SET PATH, TALLY

Description SELECT is a SQL command you use to retrieve data from one or more

Clauses

New Features

table/DBF. When you use SELECT to pose a query, FoxPro inter-
prets the query and retrieves the specified data from the
tables/DBFs. SELECT is built into FoxPro like any other FoxPro
command. You can create a SELECT query:

¢ In the Command window
* In a FoxPro program (like any other FoxPro command)
¢ In the RQBE window

When you issue SET TALK ON and execute SELECT, FoxPro displays
the query time and the number of records in the results. _TALLY
stores the number of records in the query results.

[ALL | DISTINCT]

The SELECT clause specifies the fields, constants and expressions
that will be displayed in the query results.

1-20

By default, all of the rows (ALL) in the query results are displayed.
Include DISTINCT to exclude duplicates of any rows from the query
results.

You can use DISTINCT only once per SELECT clause.

[<alias>.]<select_item> [AS <column_name>]
[, [<alias>.]<select_item> [AS <column_name>] ...]

<select_item> can be one of the following:
e The name of a field from a table/.DBF in the FROM clause

e A constant specifying that the same constant value is to ap-
pear in every row of the query results

¢ An expression that can be the name of a user-defined function
(UDF)

Each item you specify with <select_item> generates one column of
the query results. If more than one item has the same name, be
sure to qualify the matching names by including the table/ DBF alias
and a period before the item name.

New Features

New Features

Although using UDFs in the SELECT clause has obvious
benefits, you should also consider the following restrictions:

1. The speed of operations performed with SELECT may be
limited by the speed at which such UDFs are executed.
High-volume manipulations involving UDFs may better be
accomplished by using API and UDFs written in C or assem-
bly language.

2. You can assume nothing about the FoxPro input/output
(I/0) or table/DBF environment in UDFs invoked from
SELECT. In general, you don’t know which work area is
selected, the name of the current table/DBF or even the
names of the fields being processed. The value of these vari-
ables depend on precisely where in the optimization process
the UDF is invoked.

3. It isn’t safe to change the FoxPro /O or table/.DBF en-
vironment in UDFs invoked from SELECT. In general, the
results are unpredictable.

4. The only reliable way to pass values to UDFs invoked
from SELECT is by the argument list passed to the function
when it is invoked.

5. If you experiment and discover a supposedly forbidden
manipulation that works correctly in a certain version of
FoxPro, there is no guarantee that it will continue to work
in later versions.

Apart from these restrictions, feel free to use UDFs. How-
ever, don’t forget the effect of using SELECT on performance.

The following field functions are available for use with a select item

that is a field or an expression involving a field:

AVG(<select_item>) — Averages a column of numeric data.

COUNT(<select_item>) — Counts the number of select items in
a column. COUNT(*) counts the number of rows in the query
output.

1-21

I/
||||‘

1-22

'\

® MIN(<select_item>) — Determines the smallest value of
<select_item> in a column.

* MAX(<select_item>) — Determines the largest value of
<select_item> in a column.

* SUM(<select_item>) — Totals a column of numeric data.

You cannot nest field functions.

The optional AS <column_name> clause specifies the heading for a
column in the query output. This is useful when <select_item> is
an expression or contains a field function and you want to give the
column a meaningful name. <column_name> can be an expression
but cannot contain characters (for example, spaces) that aren’t per-
mitted in table/.DBF field names.

FROM <table> [<local_alias>] [, <table> [<local_alias>] ...]

The FROM clause lists the tables/.DBFs that contain the data to be
retrieved by the query. If no table/DBF is open in a work area in
the current directory or the FoxPro path, the Open dialog appears
so you can specify the file location.

If a table/.DBF in the query isn’t open in a work area, it is opened
and remains open in a work area once the query is complete.

<local_alias> is a temporary name for a table/.DBF specified with
<table>. If you specify a local alias, you must use the local alias in
place of the table/.DBF name throughout SELECT. The local alias
doesn’t affect the FoxPro environment.

If several tables have fields with the same name, which must
be qualified, you may want to use a short local alias.

INTO <destination>

The INTO clause determines where the query results are stored. If
you include the INTO clause, no output display is produced. This
means that if you include an INTO clause and a TO clause in the
same query, the TO clause is ignored. If you don’t include the INTO
clause, query results are displayed in a Browse window. Query
results can also be directed to the printer or a file with the TO
clause.

New Features

New Features

<destination> can be one of the following:

®* ARRAY <array> — Stores query results in a memory variable
array named <array>. The array isn’t created if the query
selects 0 records.

* CURSOR <cursor> — Stores query results in a cursor named
<cursor>. If you specify the name of an open table/DBF,
FoxPro closes the table/DBF and creates a cursor by that
name without warning if SET SAFETY is OFF. After SELECT is
executed, the temporary cursor remains open and is active but
is read-only. Once you close this temporary cursor, it is
deleted. Cursors can exist as a temporary file on the
SORTWORK drive.

* DBF <table> | TABLE <table> — Stores query results in a
table/.DBF named <table>. If you specify a table/.DBF that is
already open, FoxPro closes the table/DBF and reopens it
without warning if SET SAFETY is OFF. If you don’t specify an
extension, the table/DBF is given a .DBF extension. The
table/.DBF remains open and active after SELECT is executed.

TO FILE <file> [ADDITIVE]
| TO PRINTER [PROMPT]
| TO SCREEN

If you include a TO clause but not an INTO clause, you can direct
query results to an ASCII text file named <file> or to the printer in
addition to the desktop or main FoxPro window.

If query results are directed to a text file, including ADDITIVE ap-
pends output to any existing contents of the file. If you don’t in-
clude a TO clause or an INTO clause, the query results appear on the
screen by default unless you specify NOCONSOLE.

In FoxPro for Windows, if query results are directed to the printer,
you can include the optional PROMPT clause to display a dialog
before printing starts. Place the PROMPT key word immediately
after TO PRINTER. PROMPT is ignored in FoxPro for MS-DOS.

In this dialog you can adjust printer settings. You can specify the
number of copies and page numbers to print and direct print output
to a file. The Windows Printer Setup dialog can also be opened to
adjust additional printer settings. The printer settings you can ad-
just depend on the currently installed printer driver.

1-23

1-24

By default, query results are sent to a Browse window. Include TO
SCREEN to direct query results to the desktop (FoxPro for MS-DOS),
the main FoxPro window (FoxPro for Windows) or an active user-
defined window.

When query results are output, columns are named according to the
following rules:

e If a select item is a field with a unique name, the output
column name is the field’s name.

¢ If more than one select item has the same name (for example,
CUST.ZIP and STATE.ZIP) output columns are named <exten-
sion>_A and <extension>_B (ZIP_A and ZIP_B). For a select
item with a 10-character name, the name is truncated to add
the underscore and letter.

e If a select item is an expression, its output column is named
EXP_A. Any other expressions are named EXP_B, EXP_C, and so
on.

e If a select item contains a field function such as COUNT(), the
output column is named CNT_A. If another select item con-
tains SUM(), its output column is named SUM_B.

PREFERENCE <name>

If query results are sent to a Browse window, you can include
PREFERENCE to save the Browse window’s attributes and options for
later use. PREFERENCE saves the Browse window’s attributes in-
definitely in the FOXUSER resource file. Preferences can be
retrieved at any time. Issuing SELECT with a PREFERENCE <name>
for the first time creates the preference. Issuing SELECT later with
the same preference name restores the Browse window to that
preference state. When the Browse window is closed, the preference
is updated.

If you exit a Browse window by pressing Ctrl+Q, any Browse win-
dow changes are not saved to the resource file.

NOCONSOLE

Including NOCONSOLE prevents the query results from being dis-
played on the desktop or main FoxPro window. NOCONSOLE can be
used whether or not a TO clause is present. If an INTO clause is
included, NOCONSOLE is ignored.

New Features

New Features

PLAIN

Including PLAIN prevents column headings from appearing in the
query output displayed. PLAIN can be used whether or not a TO
clause is present. If an INTO clause is included, PLAIN is ignored.

NOWAIT

When query results are directed to a Browse window in a program,
including NOWAIT continues program execution after the Browse
window is opened. The program doesn’t wait for the Browse win-
dow to be closed, but continues execution on the program line imme-
diately following the SELECT statement.

When TO SCREEN is included to direct output to the desktop (FoxPro
for Windows), the main FoxPro window (FoxPro for Windows) or a
user-defined window, output pauses when the desktop or main
FoxPro window is full of query results. Press a key to see the next
set of query results. If NOWAIT is included, the query results are
scrolled off the desktop, the main FoxPro window or the user-
defined window without pausing for a key press. NOWAIT is ignored
if included with the INTO clause.

WHERE <joincondition> [AND <joincondition> ...]

[AND | OR <filtercondition> [AND | OR <filtercondition> ...]]

WHERE is required to retrieve data from multiple tables. It tells
FoxPro to include only certain records in the query results.

<joincondition> specifies fields that link the tables in the FROM
clause. If you include more than one table/DBF in a query, you
should specify a join condition for every table/.DBF after the first.

1-25

If you include two table in a query and don’t specify a join
condition, every record in the first table/.DBF is joined with
every record in the second table/DBF as long as the filter
conditions are met. Such a query can produce lengthy
results.

Be careful when using functions (DELETED(), RECNO(),
EOF(), FOUND(), RECCOUNT(), and so on) that support an
optional alias or work area in join conditions. Including an
alias or work area in these functions may yield unexpected
results. SELECT doesn’t use your work areas; it performs the
equivalent of USE ... AGAIN. Single-table queries that use
these functions without an optional alias or work area will
return proper results. However, multiple-table queries that
use these functions — even without an optional alias or
work area — may return unexpected results.

Use caution when joining tables with empty fields because
FoxPro matches empty fields. For example, if you join on
CUSTOMER.ZIP and INVOICE.ZIP, and CUSTOMER contains 100
empty zip codes and INVOICE contains 400 empty zip codes,
the query output contains 40,000 extra records resulting
from the empty fields. Use the EMPTY() function to
eliminate empty records from the query output.

Multiple join conditions must be connected with the AND operator.
Each join condition has the following form:

<field1> <comparison> <field2>

where <field1> is the name of a field from one table, <field2> is the
name of a field from another table, and <comparison> is one of the
following operators:

<comparison>
<> 1= #
>
> =
<
< =

1-26 New Features

New Features

When you use the = operator with strings, it acts differently
depending on the setting of SET ANSL When SET ANSI is OFF,
FoxPro treats string comparisons in the manner with which Xbase
users are familiar. When SET ANSI is ON, string comparisons follow
ANSI standards.

<filtercondition> specifies the criteria that records must meet to be
included in the query results. A query can include as many filter
conditions as desired, connected with the AND or OR operator. You
can also use the NOT operator to reverse the value of a logical ex-
pression or use EMPTY() to check for an empty field.
<filtercondition> can take one of these forms:

Form: <field1> <comparison> <field2>
Example: customer.cust_id = payments.cust_id

Form: <field> <comparison> <expression>
Example: payments.amount >= 1000

Form: <field> <comparison> ALL (<subquery>)
Example: taxrate < ALL ;
(SELECT taxrate FROM customer WHERE state = “WA”)

When the filter condition includes ALL, the field must meet the
comparison condition for all values generated by the subquery
before its record is included in the query results.

Form: <field> <comparison> ANY | SOME (<subquery>)
Example: taxrate < ANY ;
(SELECT taxrate FROM customer WHERE state = “WA”)

When the filter condition includes ANY or SOME, the field must

meet the comparison condition for at least one of the values
generated by the subquery.

Form: <field> [NOT] BETWEEN <start_range> AND <end_range>
Example: customer.taxrate BETWEEN 5.50 AND 6.00

This example checks to see if the values in the field are within a
specified range of values.

1-27

1-28

Form: [NOT] EXISTS (<subquery>)
Example: EXISTS ;
(SELECT * FROM invoices WHERE customer.zip = invoices.zip)

This example checks to see if at least one row meets the criteria
in the subquery. When the filter condition includes EXISTS, the
filter condition evaluates to true unless the subquery evaluates to
the empty set.

Form: <field> [NOT] IN <value_set>
Example: customer.zip NOT IN (“98052”,“98072”,“98034”)

When the filter condition includes IN, the field must contain one of
the values before its record is included in the query results.

Form: <field> [NOT] IN (<subquery>)
Example: customer.cust_id IN ;
(SELECT tranfile.cust_id FROM tranfile WHERE tranfile.item=“FoxPro”)

Here, the field must contain one of the values returned by the
subquery before its record is included in the query results.

Form: <field> [NOT] LIKE <expC>
Example: customer.state NOT LIKE “WA”

This filter condition searches for each field that matches <expC>.
You can use the wildcard characters % (percent sign) and _
(underscore) as part of <expC>. The underscore represents a
single unknown character in the string.

A subquery is SELECT within a SELECT and must be enclosed in
parentheses. You can have multiple subqueries at the same level
(not nested) in the WHERE clause. Subqueries can contain multiple
join conditions.

GROUP BY <groupcolumn> [, <groupcolumn> ... 1

Including the GROUP BY clause groups rows in the query based on
values in one or more columns. <groupcolumn> can be the name of
a regular table/.DBF field, or a field that includes an SQL field func-
tion, or a numeric expression indicating the location of the column
in the result table/.DBF (the leftmost column number is 1).

HAVING <filtercondition>

If you include the HAVING clause, FoxPro will include groups in the
query results as long as they meet the filter condition specified with
<filtercondition>. <filtercondition> cannot contain a subquery.

New Features

New Features

HAVING <filtercondition> should be used with GROUP BY to specify
the criteria that groups must meet to be included in the query
results. HAVING can include as many filter conditions as desired,
connected with the AND or OR operator. You can also use NOT to
reverse the value of a logical expression.

A HAVING clause without a GROUP BY clause acts like a WHERE
clause. You can use local aliases and field functions in the HAVING
clause. Use a WHERE clause for faster performance if your HAVING
clause contains no field functions.

[UNION [ALL] <SELECT command>]

Include the UNION clause to combine the final results of one SELECT
with the final results of another SELECT. By default, UNION checks
the combined results and eliminates duplicate rows. Use the op-
tional ALL key word to prevent UNION from eliminating duplicate
rows from the combined results.

You can use parentheses to combine multiple UNION clauses.

UNION clauses follow these rules:
e You cannot use UNION to combine subqueries.
e Both SELECTs must output the same number of columns.

e Each column in the query results of one SELECT must have
the same data type and width as the corresponding column in
the other SELECT.

e Only the final SELECT can have an ORDER BY clause, which
must refer to output columns by number. If an ORDER BY
clause is included, it affects the entire result.

ORDER BY <order_item> [ASC | DESC]
[, <order_item>[ASC | DESC] ...]

ORDER BY sorts the query results based on the data in one or more
columns. Each order item must correspond to a column in the
query results and can be one of the following:

e A field in a FROM table that is also a select item in the main
SELECT clause (not in a subquery).

e A numeric expression indicating the location of the column in
the result table. (The leftmost column is number 1.)

You can specify the optional DESC key word if you want your query
results to appear in descending order according to the order item or
items. ASC specifies an ascending order for query results and is the
default for ORDER BY.

1-29

Examples

1-30

Query results appear unordered if you don’t specify an order with
ORDER BY.

This example displays the names of all companies in the CUS-
TOMER.DBF (one field from one table).

SELECT custamer.compary ;
FROM custamer

This example displays the contents of three fields from two tables
and joins the two tables based on the CUST ID field. It uses local
aliases for both tables.

SELFECT a.campary, b.idate, b.itotal ;
FROM custamer a, invoices b ;
WHERE a.cno = b.cno

This example displays only records with unique data in the specified
fields.

SELECT DISTINCT a.comparly, b.idate, b.itotal ;
FROM customer a, invoices b ;
WHERE a.cno = b.cno

This example displays STATE, ZIP and COMPANY fields in ascending
order.

SELECT state, zip, carpary, cno;
FROM customer ;
CRDER BY state, zip, compary

This example stores the contents of fields from two tables in a third
table.

SELECT a.comparty, b.idate, b.itotal ;
FROM custamer a, invoices b ;
WHERE a.cno = b.cro ;

INIO TABLE custinv.dbf

BROWSE

CLOSE DATA

This example displays only records with an invoice date earlier than
05/08/90.

SELECT a.comparly, b.idate, b.itotal ;
FROM custamer a, invoices b ;
WHERE a.cno = b.cno ;

AND b.idate {05/08/90}

New Features

New Features

This example displays the names of all companies from CUS-
TOMER.DBF with a zip code that matches a zip code in the INVOICES
table/.DBF.

SELECT comparty FROM custarer a WHERE ;
EXISTS (SELECT * FROM offices b WHERE a.zip = b.zip)

This example displays all records from CUSTOMER.DBF having a
company name that begins with an upper-case C and is an un-
known length.

SELECT * FROM customer a WHERE a.comparty LIKE “C%”

This example displays all records from CUSTOMER.DBF having a
state name that begins with an upper-case N and is followed by one
unknown character.

SELFECT * FROM customer a WHERE a.state LIKE “N_"

This example displays the names of all cities in CUSTOMER.DBF in
upper-case and names the output column CityList.

SELRCT UPPER (city) AS CityList FROM custamer

1-31

SET DEVELOPMENT

Purpose

Syntax

See Also

Causes FoxPro to compare the creation date and time of a
program with those of its compiled object file when the program is
run

SET DEVELOPMENT ON | OFF

COMPILE, MODIFY COMMAND

Description SET DEVELOPMENT compares the creation date and time of a source

1-32

program with those of its corresponding compiled object file. FoxPro
recompiles the source program before it executes if SET DEVELOP-
MENT is ON and the source program is more current than its com-
piled object program. This ensures that the most current version of
a program is executed.

The source and compiled versions of the program aren’t compared if
SET DEVELOPMENT is OFF. You may not always be executing the
most current version of a program if SET DEVELOPMENT is OFF.

The most current version of a program modified with the FoxPro
editor invoked with MODIFY COMMAND is always executed, regard-
less of the DEVELOPMENT setting.

SET DEVELOPMENT needs to be ON only when programs are modified
outside of FoxPro. Using an external editor (for example, a TSR
editor) may require you to issue CLEAR PROGRAM before you execute
the modified program. See CLEAR PROGRAM in this chapter for addi-
tional information. Use SET DEVELOPMENT OFF for optimum perfor-
mance.

When SET DEVELOPMENT is ON, program execution can be canceled
during a READ. The Cancel option on the Program menu is enabled
when SET DEVELOPMENT is ON and a READ is active. Choosing
Cancel during the READ cancels program execution. If SET
DEVELOPMENT is OFF, the Cancel option on the Program menu is
disabled during a READ.

The default value of SET DEVELOPMENT is ON.

New Features

SHOW WINDOW

Purpose Displays one or more user-defined windows or FoxPro system
windows without activating them
Syntax SHOW WINDOW <window name1> [, <window name2> ...]| ALL
[IN [WINDOW] <window name3> | IN SCREEN]
[REFRESH]
[TOP | BOTTOM | SAME]
[SAVE]
See Also ACTIVATE WINDOW, DEFINE WINDOW
Description SHOW WINDOW controls the display and front-to-back screen place-
ment of windows. If windows are defined as hidden or haven’t been
activated, SHOW WINDOW displays the windows without activating
them.
You can also display system windows, such as the Command win-
dow, the Calculator, the Calendar/Diary, and so on. Desk acces-
sories (the Filer, the Calculator, and so on) must be active before
they can be displayed. If one or more windows are currently dis-
played, SHOW WINDOW lets you change the front-to-back order of the
windows.
You can’t specify where output is directed with SHOW WINDOW. Use
ACTIVATE WINDOW to direct output to a window.
Clauses <window name1> [,<window name2> ...]

New Features

Specify the name of one or more windows to display with <window
namel>, <window name2>, and so on.

ALL
Include ALL to display all windows.

IN [WINDOW] <window name3>

If IN WINDOW <window name3> is included, the window is displayed
inside a parent window without assuming the characteristics of the
parent window. A window activated inside a parent window can’t
be moved outside the parent window. If the parent window is
moved, the child window moves with it.

The parent window specified with <window name3> must first be
created with DEFINE WINDOW.

1-33

1-34

IN SCREEN

By including IN SCREEN, you can explicitly place a window on the
desktop in FoxPro for MS-DOS or the main FoxPro window in FoxPro
for Windows instead of in another window. Windows are placed on
the desktop or main FoxPro window by default.

REFRESH

You can include the REFRESH clause to redraw a Browse window.
This is useful on a network to ensure that you are browsing the
most current version of a table/.DBF. The work area for the Browse
window table/.DBF is selected.

Memo editing windows are refreshed with changes made to the
memo field by other users on a network. SET REFRESH determines
the interval between memo editing window refreshes. Refer to SET
REFRESH in this manual for additional information on how data is
refreshed in tables/.DBFs opened for shared use on a network.

TOP

Include TOP to place the specified window in front of all other win-
dows.

BOTTOM

Include BOTTOM to place the specified window behind all other win-
dows.

SAME

SAME affects only windows that have been previously displayed or
activated and then cleared from the desktop or main FoxPro window
with DEACTIVATE WINDOW. Issuing SHOW WINDOW SAME places the
specified window back into a stack of windows in the same position
the window occupied before it was deactivated.

SAVE — FoxPro for MS-DOS only

Including SAVE keeps an image of a window on the desktop or in
another window after the window has been hidden. Normally, win-
dows are removed from the desktop after they are hidden. The win-
dow image can be cleared from the desktop or a window with
CLEAR. You can’t save an image of the current output window.

SAVE is ignored in FoxPro for Windows.

New Features

Example

New Features

In this example, a window named Output is created and displayed.
Since SHOW WINDOW is used to display the window, output can’t be
directed to the window until it is activated.

CLEAR

DEFINE WINDOW output FROM 2,1 TO 13,75 TITLE 'Output’ ;
CLOSE FLOAT GROW SHADOW ZOOM

SHOW WINDOW output

1-35

SYS(20)

Purpose
Syntax
Returns

See Also

Transforms German text
SYS(20)
Character

See the following description.

SYS(20, <expC>, <expN>)

1-36

SYS(20) is used to order fields containing German words and names.
The fields are ordered to resemble the ordering in a German phone
book — upper- and lower-case are intermixed, eszets sort immedi-
ately after double s and characters with umlauts sort immediately
after the unadorned character followed by the letter e. The follow-
ing table lists the sort order of a sample set of characters:

A C T
a c t
AD e U
AE r u
ae S ua
A S ue
a sa U
af ss u
B B A%
b Sz

SYS(20) transforms the character expression <expC>. The numeric
expression <expN> specifies the number of characters in <expC> to
transform, starting with the first character in <expC>. Any addi-
tional characters after the position specified by <expN> are ignored.
The length of character string returned by SYS(20) is 2 * <expN> +
10 characters, with a maximum length of 254 characters.

In the following example, the CONTACT field contains the names of
customers. This field is indexed using SYS(20) and the first 20 char-
acters in the field. An structural index tag named GCONTACT is
created.

USE CUSTOMER
INDEX ON SYS (20, contact, 20) TAG gcontact

New Features

USE

Purpose

Syntax

See Also

Opens a table/.DBF file and associated index files

USE [<file> | ?]

[IN <expN1>]

[AGAIN]

[INDEX <index file list> | ?
[ORDER [<expN2> | <idx index file>
| [TAG] <tag name> [OF <cdx file>]
[ASCENDING | DESCENDING]I]

[ALIAS <alias>]

[EXCLUSIVE]

[SHARE]

[NOUPDATE]

CREATE, DBF(), USED()

Description USE opens a table/.DBF file in the current work area.

Clauses

New Features

If USE is issued without a table/.DBF name and a table/.DBF file is
open in the current work area, the table/DBF is closed. A table/DBF
is also closed when another table/.DBF is opened in the same work
area.

<file>17?

The name of the table/DBF to open is specified with <file>. The
Open dialog appears with a list of available tables/DBFs to choose
from if you include ? instead of a table/.DBF name.

IN <expN1>

You can open a table/.DBF in a non-current work area by specifying
the work area number with <expN1>. You can close a table/DBF in
a non-current work area by issuing USE without a file name and
specifying the work area number.

The IN clause supports 0 as a work area. Including O opens a
table/DBF in the lowest available work area. For example, if
tables/.DBFs are open in work areas one through ten, the command

USE customer IN 0

opens the client table/.DBF in work area 11.

1-37

1-38

This single command is equivalent to issuing these two commands:

SELECT 0
USE customer

AGAIN

To open a table/DBF concurrently in multiple work areas, you can
do one of the following:

* Select another work area and issue USE with the table/.DBF
name and the AGAIN clause.

¢ Issue USE with the table/.DBF name and the AGAIN clause, and
specify a different work area.

When you use a table/DBF again in another work area, the
table/DBF in the new work area takes on the attributes of the
table/DBF in the original work area. For example, if a table/.DBF is
opened for read-only or exclusive access and is used again in
another work area, the table/DBF is opened for read-only or ex-
clusive access in the new work area.

Index files opened for the original table/DBF are available for the
table/DBF you open again if you don’t open indexes when you
reopen the table/DBF. The index order is set to 0 in the work areas
where the table/.DBF is reopened.

You can open indexes that weren’t opened with the original
table/.DBF. This sets the index order to O for the original table/.DBF.

A reopened table/.DBF is assigned the default alias of the work area.
You can include an alias every time you open a table/.DBF in multi-
ple work areas as long as the aliases are unique.

INDEX <index file list> | ?

You can open index files with the table/.DBF by including INDEX and
specifying a set of indexes with <index file list>. If a table/.DBF has
a structural compound index file, the index file is automatically
opened with the table/.DBF. You can open a single index file by
issuing INDEX ?. The Open dialog appears with a list of available
index files.

<index file list> can contain any combination of names of .IDX and
.CDX index files. You don’t have to include the file name extensions
for index files unless an .IDX and a .CDX index file in the index file
list have the same name.

New Features

New Features

The first index file named in the index file list is the controlling
index file, which controls how records in the table/.DBF are accessed
and displayed. If the first index file is a .CDX compound index file,
records in the table/DBF are displayed and accessed in physical
record order.

ORDER [<expN2>]

Include the ORDER clause to specify a controlling index file or tag
other than the first index file in <index file list>. <expN2> specifies
the controlling tag or index file as it appears in the index file list.
IDX index files are numbered first in the order in which they appear
in the index file list. Tags in the structural compound index file (if
one exists) are then numbered in the order in which the tags were
created. Finally, tags in any independent compound index files are
numbered in the order in which they were created. You can also
use SET ORDER to specify the controlling index file or tag. See SET
ORDER in this chapter for a further discussion of the numbering of
index files and tags.

If <expN2> is 0, records in the table/.DBF are displayed and accessed
in physical record order, and the indexes remain open. Including
ORDER 0 enables open index files to be updated while presenting the
file in record number order. Including ORDER without <expN> is
identical to including ORDER 0.

ORDER [idx index file]
ORDER [[TAG <tag name>] [OF <cdx file>]]

You can also designate an .IDX index file as the controlling index file
by specifying its name with <idx index file>.

To designate a tag of a .CDX index file as the controlling tag, specify
the tag name with <tag name>. The tag name can be from the
structural compound index file or any open compound index file. If
identical tag names exist in open compound index files, include OF
<cdx file> and specify the name of the compound index file contain-
ing the desired tag.

ASCENDING | DESCENDING

Include the ASCENDING or DESCENDING key word after the ORDER
clause to specify whether the table/.DBF records are accessed and
displayed in ascending or descending order. Including one of these
key words doesn’t change the index file or tag; it alters only the
order in which records are displayed and accessed.

1-39

1-40

ALIAS <alias>

Include ALIAS <alias> to create an alias for the table/.DBF. You can
refer to a table/DBF by its alias in commands and functions that
require or support an alias.

When a table/.DBF is opened, it is automatically assigned an alias,
which is the table/.DBF name if ALIAS isn’t included. You can create
a different alias for the table/DBF by including ALIAS and a new
alias. An alias can contain up to 10 letters, digits or underscores
and must begin with a letter or an underscore.

A default alias is assigned automatically if you open a single
table/DBF simultaneously in multiple work areas with AGAIN and
you don’t specify an alias when you open the table/DBF in each
work area.

A default alias is also assigned if a conflict occurs. For example:

CLOSE DATARASES

ACTIVATE WINDOW View && Open the View Window
USE custamer ALTAS invoices IN 1 && Alias is INVOICES
USE invoices IN 3 && Conflict, alias is C
EXCLUSIVE

Including EXCLUSIVE opens a table/.DBF for exclusive use on a net-
work. See SET EXCLUSIVE for more information on the exclusive use
of tables/.DBFs.

SHARE

Including SHARE opens a table/.DBF for shared use on a network.
SHARE allows you to open a table/DBF for shared use even when
EXCLUSIVE is set ON. See SET EXCLUSIVE for more information on
exclusive and shared use of tables/ DBFs.

NOUPDATE

Including NOUPDATE prevents changes to the table/.DBF its struc-
ture.

New Features

Example This example opens three tables in three different work areas. The
View window is opened to show where the tables are open and their
aliases.

CLOSE DATARASES
ACTIVATE WINDON View
SELECT A

USE customer IN 0
USE invoices IN 0
USE salesman IN 0

New Features 1-41

New Generator Directives

FoxPro includes these new generator directives:

* #INSERT — Inserts the contents of a file into code generated by
GENSCRN or GENMENU.

* #NAME — Names a snippet produced by clauses such as SHOW,
WHEN and VALID, whether the snippet is produced at the GET
object or READ levels.

* #NOREAD — Prevents the generation of a READ statement.
* #WCLAUSES — Specifies additional DEFINE WINDOW clauses.
The following pages describe these directives in detail.

1-42 New Features

#INSERT

| Inserts the contents of a file into code generated by GENSCRN or

Purpose
GENMENU

Syntax | #INSERT <file>
i

Description The #INSERT generator directive inserts the contents of <file> into
generated code.
Use #INSERT to include a file in several screen or menu programs.
For example, use #INSERT to include a file of #DEFINE statements in
several screen programs.
The directive can appear in any snippet; it does not have to be in a
particular snippet, such as the setup code snippet. Additionally, the
directive can appear anywhere in a snippet.

Clauses <file>

New Features

This must be a text file. The generator searches for the file in the
current directory, in the FoxPro directory and subdirectories, and
along the MS-DOS path. If the file cannot be found, the generator
comments your code — indicating that the file could not be found —
and then continues the generation process.

This file cannot include other screen generator directives.

1-43

#NAME

Purpose

Syntax

Assigns a name to a snippet produced by a clause such as SHOW,
WHEN and VALID

#NAME <snippet name>

Description

Clauses

1-44

Names a snippet produced by clauses such as SHOW, WHEN and
VALID, whether the snippet is produced at the GET object or READ
level. The #NAME directive must appear at the top of a snippet,
before any code statements. Blank lines or comments can precede
the #NAME directive.

<snippet name>

This is the name assigned to the snippet. The <snippet name>
must conform to the rules for naming procedures and functions.

FoxPro does not check for duplicate names.

New Features

#NOREAD

Purpose

Syntax

Prevents the generation of a READ command

#NOREAD

Description Include the #NOREAD generator directive in a screen setup snippet

New Features

to prevent the generation of the READ command.

When #NOREAD is included in a screen setup snippet, only @ ... SAY
GET, @ ... GET, and @ ... EDIT commands are generated. When you
execute the screen code, the controls are displayed but are not ac-
tivated.

1-45

#WCLAUSES

Purpose Specifies additional DEFINE WINDOW clauses
Syntax #WCLAUSES <clause1>,<clause2>, . . .<clausen>
See Also _#READCLAUSES

Description The #WCLAUSES generator directive specifies additional DEFINE
WINDOW clauses.

The #WCLAUSES directive must be in the setup snippet of the screen
whose window definition you want to modify. If you do not check
the Define Windows check box in the Generate Screen dialog,
#WCLAUSES has no effect.

The setup snippet can contain only one #WCLAUSES directive.
If more than one #WCLAUSES directive exists, FoxPro uses
only the first one.

1-46 New Features

New System Memory Variables

System memory variables are “built-in” memory variables that
FoxPro creates and maintains automatically. System memory vari-
ables are by default PUBLIC; you can declare a system memory vari-
able PRIVATE.

The following table lists the FoxPro system memory variables that
are new for version 2.5 and their default values.

Variable Type Default Value
_DOS L .T. in FoxPro for MS-DOS
_MAC L .T. in FoxPro for Macintosh®
_TRANSPORT C TRANSPORT.PRG
_UNIX L T. in FoxPro for UNIX®
_WINDOWS L .T. in FoxPro for Windows

Detailed descriptions of these variables appear in the following
pages.

New Features 1-47

_DOS

Purpose
Syntax
Remarks

See Also

Contains true (.T.) if you are using FoxPro for MS-DOS
_DOS = <expL>
New to FoxPro 2.5

_MAC, STORE, _UNIX, VERSION(), _'WINDOWS

Description The _DOS system memory variable contains a logical true (.T.) if you

1-48

are using FoxPro for MS-DOS. _DOS contains a logical false (.F.) if
you are using a different FoxPro version (FoxPro for Macintosh,
FoxPro for UNIX or FoxPro for Windows).

The value contained in _DOS cannot be changed with STORE or =.

New Features

_MAC

Purpose
Syntax
Remarks

See Also

Contains true (.T.) if you are using FoxPro for Macintosh
_MAC = <expL>
New to FoxPro 2.5

_DOS, STORE, _UNIX, VERSION(), _WINDOWS

Description The _MAC system memory variable contains a logical true (.T.) if

New Features

you are using FoxPro for Macintosh. _MAC contains a logical false
(.F.) if you are using a different FoxPro version (FoxPro for MS-DOS,
FoxPro for UNIX or FoxPro for Windows).

The value contained in _MAC cannot be changed with STORE or =.

1-49

_TRANSPORT

Purpose Specifies the program to transport FoxPro 2.0 screens, labels and
reports to FoxPro 2.5 formats

Syntax _TRANSPORT = <program name>

Remarks New to FoxPro 2.5

See Also CREATE REPORT, CREATE SCREEN

Description With _TRANSPORT you can specify the program FoxPro 2.5 uses

1-50

when it transports FoxPro 2.0 screens, labels and reports to FoxPro
2.5 formats. By default, _TRANSPORT contains TRANSPORT.PRG, the
screen, label and menu conversion program installed in your FoxPro
2.5 directory.

The program you specify with _TRANSPORT runs when you attempt
to open a FoxPro 2.0 screen, label or report in FoxPro 2.5. To
specify a program other than TRANSPORT.PRG to transport your
screens, labels and reports, store the program’s name in
_TRANSPORT. If your conversion program is in a directory other
than the current default directory, include the path with the pro-
gram name.

If you rename TRANSPORT.PRG or move it to another directory, store
the new file name and/or its directory in _TRANSPORT.

You can also specify a conversion program in your FoxPro 2.5 con-
figuration file by including the following line:

_TRANSPORT = <file name>

New Features

New Features

<file name> specifies the name of your conversion program and can
include a path.

If you write your own transporter, it must accept one parameter —
the name of the report, label or screen form to transport. Your
transporter must return one parameter. The parameter can be one
of the following values:

Return Code ‘ Meaning
1 1 Successfully transported.
2 Opened without transporting.
3 w Transportation cancelled.

For more information about transporting FoxPro 2.0 screens, labels
and reports, refer to the Using Files From Other Platforms chapter.

1-51

_UNIX

Purpose
Syntax
Remarks

See Also

Contains true (.T.) if you are using FoxPro for UNIX
_UNIX = <expL>
New to FoxPro 2.5

_DOS, _MAC, STORE, VERSION(), _WINDOWS

Description The _UNIX system memory variable contains a logical true (.T.) if

1-52

you are using FoxPro for _UNIX. _UNIX contains a logical false (.F.)
if you are using a different FoxPro version (FoxPro for MS-DOS,
FoxPro for Macintosh or FoxPro for Windows).

The value contained in _UNIX cannot be changed with STORE or =.

New Features

_WINDOWS

Purpose Contains true (.T.) if you are using FoxPro for Windows
Syntax _WINDOWS = <expL>

Remarks New to FoxPro 2.5

See Also _DOS, _MAC, STORE, _UNIX, VERSION()

Description The _WINDOWS system memory variable contains a logical true (.T.)
if you are using FoxPro for Windows. _WINDOWS contains a logical
false (.F.) if you are using a different FoxPro version (FoxPro for
MS-DOS, FoxPro for Macintosh or FoxPro for UNIX).

The value contained in _WINDOWS cannot be changed with STORE or

New Features 1-53

2 Quick Start

Main Menu Bar

Zoom Control —

Title Bar
—_—

Close Box — |

Size Control —_

Scroll Bar —_

You can use the
FoxPro Command —
window to enter

FoxPro 2.5 provides the ease-of-use of a Graphic User In-
terface (GUI) on your character-based PC. Menus and
dialogs make it easy to get the information you need
when you want it.

System File Edit Database Record Program Windou Run

FoxPro commands
directly.

This is a tip.

You'll find a lot more
of them sprinkled in
the margins through

the rest of this chapter.

Usually they’ll be
clarifying something in
the text or something
shown in a graphic.
Sometimes they'll be a
hint about something
that's coming up soon.
You'll find it helpful to
read them.

Quick Start

When you start FoxPro, you see this sign-on screen

With FoxPro 2.5, you'll soon be running reports and ap-
plications, printing labels, browsing through your
database files and getting quick answers to complex busi-
ness questions. You’ll even be able to create your own
business applications. And you’ll be doing all this even if
you’ve never used a database management system before!

If you haven’t done so already, please install FoxPro fol-
lowing the instructions in the FoxPro Installation and
Configuration manual. Then, start FoxPro by moving
into the FOXPRO25 directory and entering Fox at the DOS
prompt.

In this chapter, we’ll use a special menu, called the Run
menu, to explore the many features of FoxPro. If you
want to leave FoxPro at any point during this tour, use
the mouse to choose Quit from the File menu (or press
Alt+F, then Q).

2-1

Some Navigation Aids

If you've worked with FoxPro windows work similarly to those in Microsoft
Windows or the Windows and other graphic environments. For example,

Macintosh, you already . .
know how to get around to move the Command window:

II? FOXP’OfW”h ?tm(t)ulfe' ® With the mouse, point to the window’s title bar.

yo{f:uﬁg;resrgf? ch f e;?_ Hold down the left mouse button as you drag

board, that's okay, t0o, be- the window to a new position, then release the
cause we'll be telling you button.

:ggﬁ::g;r_ keyboard ® With the keyboard, activate the menu bar by
pressing the Alt key. Press the highlighted
letter of the menu you want (W), then the letter

[Windou I of your menu option (M).

Hide
Clear The Command window flashes to indicate that
" you can move it. Use the arrow keys. When
g?”e A?Z the window is where you want it, press Enter.
1ze
Zoom t "F18 If you haven’t already, try moving the Command window.
Zoom ! “F9
Cycle "Fi1 Take a look at the Command window. You see a close
Color... box, zoom control, scroll bar and size control, just like
~ under Windows or on the Macintosh. Since we won’t be
Command "F2 using the Command window in this booklet, close it.
gi:zg Click on the Close box or press Alt+F then C.
Vieu FoxPro also includes one-step keyboard shortcuts, shown

next to most menu selections. For example, Ctrl+F2
makes the Command window reappear after you've
closed it. To use the Ctrl key, hold it down, then press
the letter or function key that does what you want.

= “l changed
my mind.” .
Open the Edit menu now (click on Edit or press Alt+E).
You'll see that we’ve used the same letters for shortcuts
as some Macintosh and Windows programs. This makes
= HELP FoxPro easier to learn and use.

Now, press the Escape key to leave the Edit menu
without making a selection. The Escape key can be used
whenever you change your mind about making a selec-
tion or taking an action.

As we get further into using FoxPro, you may want more
information than we give you in this book. If so, just
press the F1 key and FoxPro will provide help on
whatever you’re doing at the time (that’s our “context-
sensitive” help in action).

2-2 Quick Start

FoxPro Makes It Easy to Find Information

You don’t have

to be a program-

mer with FoxPro

/

System File Edit Database Record Program Window Run
/f//////””’ New Query

Query. ..
Screen. ..
Report...

because all of
the important
tasks you fre-
quently want to
do are available
from the menu
system.

Quick Start

Label...

Application...

Open the Run menu by clicking once on Run or pressing
Alt+N.

This menu provides access to the major features you
want in any database management system. You want to
see useful information quickly and easily. FoxPro lets
you get it, how and when you want it.

The Run menu provides access to:

® Queries — Database searches that give you
answers to business question. Queries are
created in the RQBE window. RQBE creates
search requests in a form that FoxPro
understands. You can save them to re-use
whenever you want.

® Screens — Screen layouts used for entering and
editing information in your database files.
They can be made to look just like printed
forms that you fill out by hand.

® Reports — Collections of data that are
organized, summarized or otherwise
manipulated to present the data in your files in
a more informative manner. Reports can be
viewed on the screen, sent to a printer, or saved
as a disk file.

2-3

Listed directories and
subdirectories (similar
to Macintosh folders)
are shown in square
brackets: [directory
name].

The [..] is MS-DOS for
the parent directory of

the directory you are in.

Unbracketed items are
file names.

Select database:

L..1

[LIBS]
[MENUS]
[PRGS]

[SCREENS]
CUSTOMER. DBF
INUOICES. DBF

[1 All Files

® Mailing Labels — A very common use for a
DBMS like FoxPro. In FoxPro, lay out your
labels just the way you want them, then save
the format by name so you can use it over and
over again.

® Applications — Programs used to do the same
Jobs over and over simply and easily. An
application might perform payroll functions,
engineering analysis, and so on.

RQBE is short for Relational Query By Example, a mouth-
ful which sounds more mysterious than it really is. RQBE
is just a computer scientist’s term for a way of quickly
getting the business answers you need, whether or not
you're a programmer. Spend a bit of time on it now and
you'll save hours and days, or more, later. It’s a very
powerful information tool that is very easy to use.

Actually, RQBE is no more difficult to learn and use than
a new clock radio — and certainly easier than a new
VCR. With a new clock radio, you'd spend a few minutes
looking at the buttons and knobs and reading the labels,
then you'd just use it. You can use RQBE just as easily.

Later welll show you just about everything you can do
with RQBE, but for now let’s see how easy it is to browse
through a database file for the information you want.

Choose New Query from the Run menu. If no database
files are open, youlll see a dialog that allows you to
choose the one you want. You can do several things in
this dialog, but we only need to work with the list at the
left.

The file we want is in the TUTORIAL subdirectory, so
select it now. Tab to the list, if necessary, highlight
[TUTORIAL] using the arrow keys, then press Enter. Or,
Jjust double-click on [TUTORIAL]. From the new list you
see, select CUSTOMER.DBF the same way.

This takes you to the RQBE window shown on the next
page.

Quick Start

Three Steps to RQBE

1. Choose the
database files
that RQBE uses.

ROB D
Output Fields

Databases Output To
[cuSTOMER t CNO [X] Select Fields...
$ COMPANY

2. Choose the t CONTACT [1 Order By...
fields that RQBE . $ ADDRESS [1 Optioms...
displays. T cIty [1 Group By...

< Add > 3 STATE [1 Having... < See SQL >

< Clear > « Do Query »

Field Name NOT Example Up~Lo Select

” Criteri

3. “Press” the riteria
Do Query push <Insert>
button. FoxPro ® N
searches the smove
database(s) and < Or >
displays your

RQBE answer.

If the Databases list is
empty, press Add then

select CUSTOMER.DBF.

If other files are listed,
remove them. Highlight
each one, then press
Clear.

With the keyboard, tab
to the list box, then use
the arrow keys to high-
light the file name you
want. Press the
Spacebar to select it,
then tab down and
press Clear. Use
Shift+Tab to get back to
the list if you want to
remove more than one
file.

Quick Start

The RQBE window contains a lot because it does a lot.
For now just ignore most of what you see. All we need is
three of the “clock-radio-like” functions of RQBE.

At the left of the window, you see the names of one or
more database files. In this case, only the CUSTOMER
database appears.

Next is a list of field names, or column headings, for the
data table.

And last, we need the <<Do Query>> push button. It’s
the default button, enclosed in double brackets (rather
than single brackets like <Clear>). Push it now by press-
ing Ctrl+Enter or just clicking on it.

Your screen should look like the picture at the top of the
next page. You're looking at a simple table of informa-
tion, yet this is the basis of every relational database
management system (DBMS) in existence. (We told you it
wasn’t mysterious.)

You've probably worked with similar tables in a spread-
sheet or word processor. You set up columns and label
them at the top, then enter your information row by row
below that. In a DBMS, the headings are called “fields”
and the rows of information are called “records.”

2-5

Browsinj a Database File

Columns are
called “fields”
while rows are
called “records.”

System

File Edit Database

Company

Record Program

Windou Run

Brouse

Output To

FoxPro
presents your
query answer
ina

Change column
sizes by drag-
ging the vertical
lines or using
the Browse

1st Computers

1st Data Reductions

1st Softuare Systems Ltd.
ist Survey

A Beck Pertamina

A. Arts Computers

A. Bloomington Biz

AZ Inc

AbbymMark Uelonex
Acres Tree Solutions
Add Associates

461 Add Inc

Adder Incorporated
Adv. Softuare

Jeff U. Culbert

I Brouse 44"

Dennis Joh
Rance Siuren
Robert Hepuort!
Jim Ansarti
Darryl Roudebu
Phil Putnan
Tom Totah
Isador Sueet
Russell Kmickle
Len Silverman
Bert Crauford
Brenda Carturig
Barbara H. Martj

[1 Options...

< See SQL >
« Do Query »

Up~Lo Select
Criteria

<Insert>

<Remove>

< Or >

menu.

When it finished work-
ing, FoxPro told you
how many records it
found and how long it
took to find them. That
message goes away
when you start moving
around on the screen.

H@iﬁ!ﬁi‘

Change

Grid Off

Unlink Partitions
Change Partition "H

Size Field
Move Field
Resize Partitions

Goto...
Seek. ..
Toggle Delete T

Append Record “N

2-6

You can zoom the Query window. Click on the upper
right corner or choose ZoomT from the Window menu.
You can scroll vertically or horizontally to see more of
your information. Click on the scroll bars or use Tab and
Shift+Tab, PgDn and PgUp.

You can change the order of the fields by dragging the
column headings (field names) where you want them. If
you don’t have a mouse, use the Move Field option on the
Browse menu.

You can even change the size of the columns by moving
the lines between the fields. Drag the lines or use the
Size Field option on the Browse menu.

Try manipulating the Query window. It doesn’t let you
change the data, so you can’t hurt your database.

Until now, we’ve been browsing through all the data in
the CUSTOMER database. With RQBE, you can also select
only the data you want to see. We'll do that next.

Press Escape to close the Query window and return to
the RQBE window. We're going to simplify this informa-
tion next.

Quick Start

Turning Data into Information

Use this check
box to select only

RQBE - UNTITLED

the fields you
want to see.

Use this check
box to specify the
order in which
you see your data.

_—

Databases Output Fields Output To
»CUSTOMER kS CNO X1 Select Fields...
£ COMPANY
k3 CONTACT 1 Order By...
k4 [1 Options...
k3 [1 Group By...
< Add > | [1 Having... < See SQL >
< Cley « Do Query »
,——’11;Td Name NOT Example UpzLo Select

Criteria

To select check
boxes, push buttons
and radio buttons:
Tab until the control
is highlighted, then
press Enter. Or just
click on the control
with the mouse.

FoxPro check boxes ap-
pear as square brackets.
You can select as many
as you want from a group.

[X] Wrap word
[X] Auto indent
1 [X] Add line feeds

L

Quick Start

<Insert)>
<Remouve>

< Or >

Database tables typically contain more information than
you want to see all the time. If we wanted to look up
customer phone numbers we wouldn’t need the customer
ID number (CNO), the address, and so on. We can fix this
by simply picking only the fields we want and we’ll do
that now.

Choose the Select Fields... check box, then choose
Remove All. This empties the Selected Output list so
you can select the specific fields you want.

Select the CUSTOMER.COMPANY, CUSTOMER.CONTACT,
CUSTOMER.PHONE and CUSTOMER.STATE fields. To select
them one at a time, highlight a field and press the
Spacebar or just click on the field. When the field is
marked with a triangle, click Move— or press the “M”
key on the keyboard.

To move several fields at once, hold down the Shift key
as you make your choices, then Move— them. Or just
double-click on each field you want. Choose OK when
you’re done to get back to the RQBE window.

2-7

2-8

Database Fields Selected Output

CUSTOMER. COMPANY c < Move » > |t CUSTOMER. COMPANY
CUSTOMER. CONTACT c 3 CUSTOMER. CONTACT
CUSTOMER. ADDRESS c < All » > |t CUSTOMER. PHONE
CUSTOMER. CITY c $ CUSTOMER. STATE
CUSTOMER. STATE c k4
CUSTOMER. ZIP c < Remove > |t
CUSTOMER. PHONE C 3
CUSTOMER. ONO c <Remove All> |3
— Functions/Expressions [1 No Duplicates
[1 Cross Tabulate
« OK »
|
< Cancel >

Choose Do Query to see your phone list. If the Query
window is zoomed, you can see all the fields. If the fields
aren’t in the order you want, just move them around.

Company Contact State

1st Computers Jeff U. Culbertson 617/232-5853] m

1st Data Reductions Dennis Johnson 5084/524-3966| LA
1st Softuare Systems Ltd. Rance Siuren 713/723-1288| TX
1st Survey Robert Hepuorth 214/243-7247| TX
A Beck Pertamina Jim Ansarti 617/643-6928|HA
A. Arts Computers Darryl Roudebush 617/662-8157|MA
A. Bloomington Biz Phil Putnam 984/222-9457|FL
AZ Inc Tom Totah 617/823-5188|HMA
Abbymark Uelonex Isador Sueet 214/922-4927| TX
Acres Tree Solutions Russell Kmickle 281/786-8785|NJ
Add Associates Len Siluerman 415,897-2818|CA
Add Inc Bert Crauford 383/499-20886|CO
Adder Incorporated Brenda Carturight 313/573-5873| M1
Adv. Softuare Barbara H. Martin 617/646-7374| HA
Advantage Computer School Duane Marshall 408/946-1317|CA
Aerial Inc. Lynn Williams 281/696-7378|NJ
Alex County Community Corp Rance Hayden 381/459-4484|MD
Alex Systens Nancy Uright 814/838-3116|PA
American Computer Company Dick W Guyton 886/799-7786| TX
American Forum Gui Dupuy 8085/682-5580| CA

Now press Escape twice to close the Query and RQBE
windows.

When asked if you want to save the changes, answer
Yes. Then enter MYQUERY as its name to save it under
in the next dialog and choose Save.

The next time you want to look at a phone list for the
companies in your CUSTOMER database, you’ll be able to
do it by simply selecting your query by name using the
Run menu.

We'll show you just how easy that is next.

Quick Start

Saved Queries Save You Time and Effort

New Query

Query. ..
Screen. ..
Report...
Label...

Saved Queries can be run again and again with ease. To
look at the phone numbers we just saw, select Query...
from the Run menu then choose MYQUERY.QPR from the

Application...

With saved Queries, you
ask the same questions
but get answers based
on the newest data in
your files.

Close

file list.
and easily.

System File Edit Database

.
Company

Record Program Windou

QUERY
Contact

The information you want is yours, instantly

Brouse

Phone

1st Computers

1st Data Reductions

ist Software Systems Ltd.
i1st Survey

A Beck Pertamina

A. Arts Computers

A. Bloomington Biz

AZ Inc

Abbymark Uelonex

Acres Tree Solutions

Add Associates

Add Inc

Adder Incorporated

Adv. Softuare

Advantage Computer School
ferial Inc.

Alex County Community Corp
Alex Systems

American Computer Company
American Forum

[Jeff W. Culbertson

Dennis Johnson
Rance Siuren
Robert Hepuorth
Jim Ansarti
Darryl Roudebush
Phil Putnanm

Tom Totah

Isador Sueet
Russell Kmickle
Len Silverman
Bert Crauford
Brenda Carturight
Barbara H. Martin
Duane Marshall
Lynn Williams
Rance Hayden
Nancy Uright

Dick W Guyton

Gui Dupuy

617/232-5053
584/524-3966
713/723-1288
214/243-7247
617/643-6920|
617/662-8157
984/222-9457
617/823-5180
214/922-4927
281/786-0785
415/897-2818
383/499-20886
313/573-5873
617/646-7974
4088/946-1317
2081/696-7378
381/459-4484
814/838-3116
8086/799-7706
805/682-5588!

Save
Save as...
Revert

Printer Setup...
Print...

Quit

Quick Start

After you've worked with a Query for a while, you may
find that you want to change it, just a bit. You can do
that easily without having to start all over again.

Let’s modify the example query to see your company con-
tacts listed alphabetically by state. First close the Query
window, then open the File menu. This menu is similar
to what you'd see in Windows or on a Macintosh. Select
Open....

FoxPro works with different types of information. To
make it easier to find files, lists like the one in the Open
File dialog are often limited to one kind of file.

To change the file type, use the popup (see next page) at
the lower left of the dialog. When you choose Query from
this popup you'll see only Query files (file names ending
with a .QPR extension). Select MYQUERY.QPR, then
choose Open.

2-9

Changing Queries Is Easy

You are back to the familiar RQBE window with the setup
you created earlier for MYQUERY. We want to change the
order in which the records appear, so choose the Order
By... check box. In the dialog, select CUSTOMER.STATE,
then Move —. Choose OK.

CUSTOMER.STATE now has an upward pointing arrow
next to it indicating that the query will be shown by
state in ascending order, and a number 1 indicating that
this is the primary ordering field. Choose Do Query to
see the results.

Contact

FoxPro popup controls
have double lines on the
right and bottom.

Database

To display the contents,
Tab to the popup and
press Enter. Use the
arrow keys to highlight
your choice then press
Enter.

With a mouse just click
on the popup and drag to
your choice, then release
the mouse button.

2-10

Company Phone State
Yergen Endeavors 397/543-3784|[AK |
Steven Computers Scott Sanderson 285/881-2245| AL
Walker Business Gallery Bob Uogeltanz 2085/743-96881| AL
Harpoon Store Ron Morrison 501/663-9786| AR
Goods For The Masses Steven Hagerty 682/276-5827| AZ
Great Form Dorit Mouery 682-/892-8572| AZ
Harpoon PCA John Bryant 682/343-50882| AZ
Pro and Pouer Joel Miller 6082/276-6239| AZ
Quik Assistance Laurence Krouse 6827953-8869| AZ
Raybank Services & Computing Jerry Campanonoy 682/943-4683| AZ
SC Co. Gene Patterson 682/991-1558| AZ
Thralls Senski John Mattheues 682/894-9367| AZ
Weichert Compuserve Gary Cumming 684/381-2591| BC
Add Associates Len Silverman 415/897-2818| CA
Advantage Computer School Duane Marshall 488-/346-1317|CA
American Forum Gui Dupuy 885/682-5588| CA
Atec Data Service Randy Keji 488-246-5353| CA
Automated Mayo Miley Bill Hopkins 714/540-6862| CA
Azimuth Bavis & Systems Chuck Heitmeier 415/983-1683| CA

When you're done, close the Query window.

If you'd like more practice with what you've learned so
far, you can go to the Retrieving Your Data chapter in
the FoxPro Getting Started manual or the Relational
Query By Example (RQBE) chapter of the FoxPro User’s
Guide. RQBE is easy to use, and that’s part of what
makes it a FoxPro power tool.

You can come back to this when you’re ready. For a
change of pace, we’re going to run an application next.

Close the RQBE window now and save the query with its
changes.

Quick Start

Applications Can Make Tough Jobs Simple

An application is a large program that does a compli-
cated job. You, your MIS department or an outside
developer model your business operations to create ap-
plications that manage your information quickly, reliably
and with the least amount of effort.

As an information user, you don’t have to think about
any of that. Just run the applications with FoxPro.

We'll run the self-running demonstration application that
comes with FoxPro.

From the Run menu, choose Application..., then move to
the FOXPRO25 subdirectory (choose [..]). Select DEMO.APP,
then choose Run.

Mouse users simply Welcome to the FoxPro Keyboard users simply
point and click Self Running Demo use the keys indicated

FoxPro Topics:

lT.l Press space bar to select
n
°

Welcome to FoxPro
7N

- Brouse

Uieu Demo Help Exit ROBE/SQL
Press ENTER Press F1 Press ESCAPE Report Uriter
Screen Builder
Menu Builder
Project Management
Trace/Debug
Text Editing
Distribution Kit
API/Library Kit

— G
Shou Me None - F2 Agjl All - F3

F4 F5 F6 F? F8

Demo Speed
Pause Slouw Medium Fast %

-
e el el b b bl b e

[1 repeat demo - F§ ——

When you see the first screen of the demo, press F2 to
clear the topic selections. Press F6 to select a medium
speed. If you find this is the wrong speed later, you can
press Escape to come back to the main screen and reset
it. Or just press F1 then change the speed while the
demo is running.

Check the RQBE/SQL check box.

Quick Start 2-11

Setup. ..

Append From. ..

Copy To...
Sort...
Total...

Average. ..
Count...
Sum. ..

Calculate...

Report...
Label...

Pack
Reindex

2-12

Once the demo starts, you'll see a lot of familiar screens,
as well as a few things you haven’t seen yet. Don’t
bother memorizing any of this. At one point, you'll see
the SQL (Structured Query Language) programming
statement that RQBE creates to give you its answers so
fast. If you want, you can enter statements like this
yourself. (The FoxPro Language Reference tells you how.)

When you're ready, press Enter, sit back and watch the
screen. You can return to the beginning of the demo at
any time by pressing Escape.

The demo is a short overview to show you the kinds of
things that can be done with RQBE. For more details,
you can check the FoxPro User’s Guide and the FoxPro
Language Reference.

Now, check the Browse check box and uncheck the
RQBE/SQL check box. Remember, you've already
browsed through data using RQBE, knowing that RQBE
lets you look at your data without any fear of accidental-
ly changing the information. But you can also edit the
information in your database files in Browse windows.

Press Enter to run the Browse demo now.

If you're interested in learning more about Browse, you’ll
find it on the Database menu. The Looking at Your
Data chapter of FoxPro Geiting Started teaches you more
about it. A complete reference can be found in the
Database Menu chapter of the FoxPro User’s Guide.

This is a simple application, but it should give you a good
idea of how easy it is to run any FoxPro application. A
few clicks or keystrokes, then a name selection and it’s
yours.

One of the things you saw in the RQBE demo was some
activity in the bottom half of the RQBE window. Next
we’ll show you how to use this area to select only the
records you want to see from a database, and then create
a report.

Press Escape to end the DEMO.APP application.

Quick Start

It’'s Easy to Get Just the Data You Want

It’s nice to be able to get to your data quickly and easily,
but you won’t want to see all of your data all of the time.

RQBE makes data selection easy. We'll use it to select
only the customers in California, then show you how to
instantly turn the query into a report that you can view

or print whenever you want to.

The page header —— |Company Contact Phone State
is repeated at the 1st Computers Jeff W. Culbertson ~ 617/232-5053 ~ MA \
top of every page 1st Data Reductions Dennis Johnson 504/524-3966 LA l
when you print 1st Software Systems Ltd. Rance Sivren 713/723-1288 TX |
your report. 1st Survey Robert Hepworth 214/243-7247 TX ‘
A Beck Pertamina Jim Ansarti 617/643-6920 MA
A. Arts Computers Darryl Roudebush 617/662-0157 MA |
A. Bloomington Biz Phil Putnam 904/222-9457 FL
AZ Inc Tom Totah 617/823-5180 MA
Abbymark Velonex Isador Sweet 214/922-4927 TX
These are called Acres Tree Solutions Russell Kmickle 201/786-0785 NJ i
the detail lines Add Associates Len Silverman 415/897-2810 CA
and contain infor- ———|Add Inc Bert Crawford 303/499-2086 CO
mation from your Adder Incorporated Brenda Cartwright 313/573-5873 MI
database file. Adv. Software Barbara H. Martin = 617/646-7974 MA i
Advantage Computer School Duane Marshall 408/946-1317 CA
Aerial Inc. Lynn Williams 201/696-7378 NJ
Alex County Community Corp Rance Hayden 301/459-4484 MD
Alex Systems Nancy Wright 814/838-3116 PA |
American Computer Company Dick W Guyton 806/799-7706 TX
American Forum Gui Dupuy 805/682-5580 CA |
American Innovations Garret Hill 201/245-7517 NJ
Ansari Data Software Wallace Campanelli 412/931-0818 PA |
The page footer Ansari Produce Oliver Mossangan 914/357-6767 NY
is repeated at the Applied Telephone Realtors Michael Cumming 215/359-2769 PA |
bottom of every Aspen Planning & Inc. Gary Erickson 918/254-3104 OK l
page when you Aspen Technology Mel Colby 319/659-8285 1A i
print your report. 02/03/92 Page 1l |

Quick Start

To save some effort, we’ll start with MYQUERY and modify
it. From the File menu, choose Open.... In the dialog,
use the Type popup to change the file type to Query.
Change to the TUTORIAL subdirectory, then select
MYQUERY.QPR and choose Open.

The RQBE window shows the fields selected and the order
in which we’ll see the records. Choose Do Query to take
another quick look at the data. Zoom the Query window
to fill the screen, then scroll down a few screens, scan-
ning the data as you go.

2-13

With RQBE, the only
thing you have to do is
select your fields and
type in is the values you
want (or don’t want) —
database management
with no programming at
all.

You can ask for sear-
ches like: customers
whose year-to-date pur-
chases are More Than
$10,000 (entered as
10000 with no dollar
sign, no comma), or
customers In CA, OH,
NY (use commas to
separate the items).

If you want to take a
break, close the RQBE
window. You can get to
the RQBE window later
select Open... from the
File menu, and choosing
MYQUERY.QPR.

2-14

This database contains information on companies in
every state of the U.S. If we were planning a trip to the
West Coast, we might want to take along a phone list of
only the contacts in California. RQBE makes this easy.

Close the Query window to get back to the RQBE window.

You select data by telling FoxPro what information you
want from which fields. First we need to specify the field
we want to use. Click on the rectangle below the words
Field Name. Release the mouse button when CUS-
TOMER.STATE is highlighted. (Or tab to the rectangle,
then use the Spacebar and arrow keys to select the field.)

The NOT check box would be checked if we wanted all the
customers except those in California, but we don’t.

Field Nawme NOT Example Up~Lo Select
Criteria
% CUSTOMER. STATE [1] Like L1

Exactly Like <Insert>

More Than

Less Than <Remove>

Betueen

In < Or >

Tab to the word Like, then press the Spacebar. (Or drag
the word with the mouse.) This popup contains the condi-
tions available for selecting the information RQBE looks
for. For now, just leave Like selected and move to the
area under Example.

We need an example (this is Relational Query By Ex-
ample, after all) of what to include so type CA in the text
box just below the word Example. The selection criteria
tells FoxPro to “Find all of the records in which the CUS-
TOMER.STATE field looks like CA.” Notice that CA is
entered in upper-case letters because all the records in
the CUSTOMER table have upper-case states. If you want
to match records regardless of case, choose the Up=Lo
check box.

Choose Do Query and FoxPro gives you your answer in
just a few seconds.

Next we'll show you how easy it is to take what FoxPro
has done and turn it into a much more attractive report.
Close the Query window now.

Quick Start

“Quick Reports” Really Are Quick and Easy

To printa
report, uncheck
the Preview
Report/Label
box, then check
the To Printer
box. Choose
OK. Do the
query to print
the report.

If you use the To
File check box,
RQBE sends the
report — headers,
footers and all —
to a text file you
name. You can
then modify the
text with a word
processor or page
layout program.

FoxPro radio buttons
appear as paren-
theses. You can
choose only one from

To produce a report, first change the selection on the
Output To popup (in the upper right corner of the RQBE

window) from Browse to Report/Label.
Options... check box.

"-.___-‘-.~‘>

Check the

[1

- -
b el

~
.
Qe

— Formatting Options
¢ > Screen Display
(+> Report

> Label

\:rBE Display Options:

Report/Label Form Name

Quick Report...

[1 Overurite

Preview Report/Label
Show Summary Info Only
Eject Page Before Report

Report Heading

Suppress Column Headings
Console On ¢ > Console Off
[X1 Pause Between Screens

Output Destinations
1 To Printer
[1 To File
[1 Overurite File
[1 Use Printer Setup
In Report/Label Form

<«

OK »
< Cancel >

In the RQBE Display Options dialog, select the Report
radio button, then check the Quick Report... check box.

a group.

!() Left justify |

‘(«) Right justify

Quick Start

ROBE Display Options:
— Formatting 0 inations
¢ > Screen Di|| ROBE Quick Report: ter
(+> Report
¢ > Label (+> Column Layout Fieldl Field2 rurite File
L 1 Repor|| ¢ > Form Layout XXXXXX XXXXXX nter Setup
X XXXXXX XXXXXX rt/Label Form
‘ [X1 Quick|| Report Width XXXXKX XXXXXX
[X1 Previ
[1 Shou Save as
€1 Eject| I (| x>
[1 Repor|
« OK » < Clear > ancel >
[1 Suppr
] ¢+> Conso
[1 Pause Betueen Screens AAJ

Quick reports can be created using field names as column
headings, or displaying field names and fields along the
left side, with the information in one long column. Leave
the Column Layout radio button selected and type
TUTORIAL\MYQUERY.FRX in the Save as text box. Choose
OK and then OK again to return to the RQBE window

2-15

Now choose OK to exit the RQBE Quick Report dialog and
OK again to exit the RQBE Display Options dialog.
Choose Do Query in the RQBE window to preview your
report!

FoxPro automat-
ica”y created a File Edit Database Record Program Window Run RQBE
page header
using the field Contact
names from your
database file.

Add Associates Len Silverman 415/897-2818

Advantage Computer School Duane Marshall 408/946-1317

HER i Gui Dupuy 805/682-5580

The detail lines ——Atec Data Service Randy Keji 408-246-5353
are the database Automated Mayo Miley Bill Hopkins 714/548-6062
records for com- Azimuth Bavis & Systems Chuck Heitmeier 4157983-1603
panies in Califor- Azimuth Corp Al Reetz 619-/271-8518
f Battery Weaver Brian Case 4157952-7761
nia. Belmar Fishing Systems Mike Ozer 415/323-2469
Belmar Tronixs Computer Compuserve Andy Rigney 2137452-9369

Big Incorporated Bert Dalgleish 818/762-5886

Blake Inc. Bob Dot 4157992-8718

[Bob Leuis Walker & Jackson Dan Tillotson 2137533-7332

To see more of Bulldog Inc. Bill Kane 415/864-7557
the report, Business Equipment Termi Larry Uan Lockern 619/564-2809

choose More or
use the PgDn key.

& S Computing & Systems Parky Kmickle 415/325-43085
4 Column:)

Choose More (or press the PgDn key) a few times until
you get to the next dotted line in the report. This indi-
cates a page break.

Notice the page footer (with the date and, if you scroll to
the right, the page number) that appears at the bottom of
every page and the repeated page header — all done for
you automatically by FoxPro.

But we can do even better than this without a lot of
work. Choose Done to get back to the RQBE window.

2-16 Quick Start

Letting the Report Writer Work for You

Now that we’ve got a report, we can make it more attrac-
tive using the Report Writer. It’s easy. We’ll change our
report to look like this:

We’ll change
the repeating +— Company Contact Phone State
page header
by reposition- Add Associates Len Silverman 415/897-2818 CA
. Advantage Computer School Duane Marshall 4087946-1317 CA
ing the American Forum Gui Dupuy 885/682-5588 CA
column head- Atec Data Service Randy Keji 408/246-5353 CA
ings and Automated Mayo Miley Bill Hopkins 714/540-6862 CA
. Azimuth Bavis & Systems Chuck Heitmeier 415/989-1683 CA
adding a box Azinuth Corp Al Reetz 619/271-8518 CA
around them. Battery UWeaver Brian Case 415/952-7761 CA
Belmar Fishing Systems Mike Ozer 415/323-2469 CA
Belmar Tronixs Computer Andy Rigney 2137452-9369 CA
Big Incorporated Bert Dalgleish 818/762-5886 CA
| Blake Inc. Bob Dot 415/992-8718 CA
L Bob Lewis Walker & Jackson Dan Tillotson 213s533-7332 CA

To start, from the File menu select Open.... Change the

;ext in the file type to Report, then select MYQUERY.FRX.
age
Header MYQUERYR. FRX
band. Page Header y
Contact

PgHead
Fields in PgHead
the Detail PaFaot -
band. PgFoot

PgFoot

PgFoot
FoxPro
function in . .
the Page This screen shows the format of the quick report FoxPro

Footer band. created for you. Scroll to the right to see the rest of the
header and footer. We’ll change the header.

Text, fields and FoxPro functions are all “objects” that
you can move around, just as you would in Microsoft
Windows or on a Macintosh.

To move objects:
® With the mouse, select and drag the object.

® With the keyboard, use the arrow keys, Tab,
and Shift+Tab to position the cursor on the
object, press the Spacebar to select it, then use
the arrow keys to move it. When the object is
where you want it, press the Spacebar again.

Quick Start 2-17

PgHead
stands for
“page header.”
Information
placed here
appears at the
top of every
page.

Detail stands
for the informa-
tion from your
database file:
the details from
records.

PgFoot stands
for “page
footer.” Informa-
tion placed here
appears at the
bottom of every

page.

To start over, select the
box, then press the

PgHead
PgHead
PgHead Company Contact Phone
PgHead
Detail §
PgFoot
PgFoot
PgFoot

PgFoot DEIVX®)

Move “Company” in the page header so it’s centered
above the company field, leaving a blank line between
the title and the field. Then center the other column
headings above the fields on the same line, too.

MYQUERYR. FRX
Page Header

Boxes are drawn starting from the upper left corner of
the box. To add a box around the column headings, first
position the cursor or mouse pointer) to the left and one
line above the “Company” heading.

Now choose Box from the Report menu. A small flashing
box appears. Use the arrow keys or drag until the box is
positioned about as shown below. When it’s where you
want it, press the Spacebar or release the mouse button.

Delete key.
To see what your report is going to look like, choose Page
Preview... from the Report menu. View the report, then
close the Preview window. Save the report and close the
Report Writer window, then close the RQBE window, too.
Previeu

Company Contact Phone State

Add Associates Len Siluerman 415/897-2818 CA

jAdvantage Computer School Duane Marshall 488/946-1317 CA

American Forum Gui Dupuy 8085/682-5588 CA

Atec Data Service Randy Keji 4088/246-5353 CA

JAutomated Mayo Miley Bill Hopkins 714/548-60862 CA

Azimuth Bavis & Systems Chuck Heitmeier 415/983-1683 CA
Next we’ll show you how to use multiple files in reports.
Youll find this feature useful, no matter what kind of
business you’re in.

2-18 Quick Start

Even Multi-File Reports Are Easy

So far, we’ve been working with a single database file,
but you’ll find that you often want to combine informa-
tion from different databases into a single report. This
used to be a big deal. You would have to “open files in
multiple work areas,” “set relations” and do various other
complex things.

Not anymore. With RQBE you just join the files. As an

12: d(i:r?lusrmat example, you might keep customer names and addresses
begin v%ith an in one file, and customer invoices in another. To produce
are from the a report that shows the invoices by company, you'd need
Invoices file, to combine information from both files.
while the others
are from the 03/28/92 Page 1
Customer file.
%pany Phone Contact Idate Ttotal
Atec Data Service 408/246-5353 Randy Keji 05/17/90 2721.19

05/30/90 163.72
Repeating data 05/26/90 44191
in c?olumr?s (like /// 05/31/90 762.56

4 05/28/90 744.49

companies and

contacts) can 4833.87
be suppressed. |Automated Mayo Miley = 714/540-6062 Bill Hopkins 05/08/90 2336.34
2336.34
Azimuth Corp 619/271-8518 Al Reetz 05/08/90 2047.08
2047.08
Belmar Tronixs Computer 213/452-9369 Andy Rigney 05/10/90 2353.43
Information can | 335343
be grouped and |

totaled based on
requirements
that you specify.

Quick Start

The files need something in common so that you can join
them. Our CUSTOMER.DBF and INVOICES.DBF files both
have a field called CNO. It contains an identification
number so we can tell which invoice is whose without
having to enter all the customer information over and
over again. We’'ll use these files for our report.

Use the File menu to open the query MYQUERY.QPR.
Choose the Select Fields... check box, then remove
CUSTOMER.STATE from the Selected Output list. (Select
the field then choose Remove.) Move CUSTOMER.PHONE
(drag the double-headed arrow on the left) so it’s below
CUSTOMER.COMPANY, then choose OK.

2-19

2-20

In the RQBE window, choose Add.... Select INVOICES.DBF
then choose Open. To join the two files, we need to select
the field that holds the customer number in both databases.
On the left popup FoxPro has already selected IN-
VOICES.CNO and on the right popup CUSTOMER.CNO. If you
wanted to join the databases on different fields, you could
select them from the popups, but this is the match we want.
We want records where the customers match, so make cer-
tain the NOT check box is not checked. Make sure the con-
dition is Like, then choose OK

Now we can add the fields we want from the INVOICES
file. Choose the Select Fields... box, then scroll down the
Database Fields list and move INVOICES.IDATE then
INVOICES.ITOTAL to the Selected Output box. Choose OK.
The RQBE window should look like this:

RQBE - MYQUERYR

Databases

Output Fields

»CUSTOMER
INUOICES

< Add >
< Clear >

COMPANY
PHONE
CONTACT
IDATE
ITOTAL

[X] Select Fields...
1 Order By...

1 Group By...
1 Having...

Output To
Report/Label

[X1 Options...

< See SQL >
« Do Query »

Field Name

NOT

Example

Up~Lo Select
Criteria

3] INVOICES. CNO
4 CUSTOMER. STATE

[1 Like
[1 Like

CUSTOMER. CNO
uea'

<Insert>

<Remove>

< Or >

If it looks different just make the appropriate corrections
before continuing.

Now choose Do Query. Since we changed the query, the
old report form we created doesn’t apply anymore so
choose Yes to overwrite it.

This is the plain vanilla quick report that RQBE produces.
When we continue we’ll fancy it up again while also
grouping and totaling the information by company, like
in the report on the previous page.

Close the report window, then use the File menu to open
the MYQUERY.FRX report again. (Remember to set the
Type popup to Report.)

Quick Start

Grouping and Subtotaling in RQBE

If Data Grouping...

is dimmed so you
can’t select it, un-
select all objects in
the Report Writer

FoxPro added
group header
and footer
bands. These
work like page
headers and
footers, except
that the informa-
tion in them is
repeated for
each group of
data instead of
each page.

Quick Start

Modify the header the way you did before. This time
move the page footer information, including the page
number, up into the header. Make it look like this:

MYQUERYR. FRX
R: | Page Header
PgHead [LJyX$)
PgHead
PgHead Company Phone
PgHead
Detail ZRTTTENY]
PgFoot
PgFoot
PgFoot
PgFoot

Contact

prore—— oot L

Use the File menu to Save the report. We'll run this
report to see what it looks like, instead of using Page
Preview. Click on the RQBE window in the background
(or select RQBE —~ MYQUERY on the Window menu) to bring
that window to the front. Choose Do Query.

This report would look better if the information were
grouped by company and totaled. Choose Done then
move to the Report Writer window (use the Window
menu or click on any part of the Report Writer window,
which is in the background).

Choose Data Grouping... from the Report menu, then
choose Add in the Group dialog. To specify how you
want your information grouped, enter Company in the
text box, then choose OK. Choose OK again to return to
the Report Writer.

MYQUERYR. FRX

PgHead
PgHead Company
PgHead

Contact

i

PgFoot

We need some room to include a subtotal by company, so
position the cursor in the Report Layout window on the
same line as the group footer label, then select Add Line
from the Report menu.

2-21

To double-click on a
field with the keyboard,
position the cursor on
the field, then press the
Spacebar twice, quickly.
If the field is highlighted
already, press the
Spacebar once to un-
select it, then twice
more.

To make a line, create a
box, then shrink it.

2-22

Scroll right and select the ITOTAL field, then choose Copy
from the Edit menu. Move the cursor down to the bottom
line of the group footer, then choose Paste from the Edit
menu.

MYQUERYR. FRX
B Page Footer
PgHead
PgHead
PgHead Phone Contact Idate
PgHead

Detail | '

L1—compaff

We want the copied field to sum the amounts for each
company, so we need to create a “computed field.”
Double-click on the copied field, then check the
Calculate... box in the dialog that appears. FoxPro can
perform a lot of different computations. We want a total,
so select the Sum radio button, then choose OK. Choose
OK again to return to the Report Writer window.

We'll add a line above the summed field. Position the
cursor above the “i” in the bottom ITOTAL field, then
select Box from the Report menu. Shrink the box that
appears until it becomes a line. Do so by moving the
bottom right corner up and over to the right. Press
Enter or release the mouse button when the line is the
right length.

MYQUERYR. FRX
R: B8 C: Page Header
PgHead
PgHead
PgHead Phone Contact Idate Itotallf

Save the report using the File menu, then bring the RQBE
window to the front while leaving the report window
open in the background.

Choose Do Query to see what the report looks like now.
Scroll right to see the last column.

Quick Start

One Last Pass with the Report Writer

System File Edit Database Record Program UWindou Run
L

83/28/92

Company Phone Contact Idate

Data Service 488/246-5353 Randy Keji 85717798
Data Service 488-/246-5353 Randy Keji 085/30/90
Data Service 408/246-5353 Randy Keji 85726798
Data Service 498/246-5353 Randy Keji 85731790
Data Service 4887246-5353 Randy Keji 85728790

Mayo Miley 714/540-60862 Bill Hopkins 085/088-30

Azimuth Corp 619/271-8518 Al Reetz 85788798

[Belmar Tronixs Computer 2137452-9369 Andy Rigney 8571890

« Done » < More > Column: 8

Not bad. But it would look better if there were more
space between the company data. We can fix that easily.

Choose Done to return to the RQBE window, then bring
the Report Writer window forward. Move the cursor to
the bottom line of the group footer, then add a blank line.
Move the copied ITOTAL field up one line.

MYQUERYR. FRX
R: @8 C: Page Header
PgHead
PgHead
PgHead Phone Contact Idate

PgFoot B

Now scroll to the left and double-click on the COMPANY
field. To prevent company names from repeating, check
the Suppress... box then select the On button and choose
OK. Choose OK again to return to the Report Writer.

Suppress repeated information in the PHONE and
CONTACT fields the same way. Then choose Save to save
the report. Close the Report Writer window.

Quick Start 2-23

2-24

In the RQBE window, choose Do Query to see the final
report.

} 83/20/92 Page 1
I Company Phone Contact Idate Itotal
‘ﬁtec Data Service 488/246-5353 Randy Ke,ji 85717798 2721.19

8573890 163.72
85/26/90 441.91
8573130 762.56
85/28/30 744.49

4833.87
Automated Mayo Miley 714/548-6862 Bill Hopkins 85708798 2336.34
2336.34
. Azimuth Corp 619/271-8518 Al Reetz 85/88790 2047.68
‘ 2047.88

Much nicer, isn’t it?

There’s more you can do with RQBE and reports, but
we’ve already covered a lot. For more practice with RQBE
and reports, see the FoxPro Getting Started manual. For
information about specific features and options, see the
FoxPro User’s Guide.

Close everything and return to the FoxPro desktop.

RQBE gives you the power to manage your data. You can
select, sort, combine and do a lot of things to turn your
data into useful information quickly and easily.

And with just one more thing, you’ll be ready to create
your own custom systems.

We'll use the application generator to show you how to
create a screen to view and edit your data. Without
doing any programming at all.

Quick Start

Data Editing and Entry—Your First Application

To select a group of ob-
jects, place the mouse
pointer to the side and
above or below the group
of objects, then drag until
the dotted line (marquee)
covers the group. Release
the mouse button. Now
you can drag the group as
a single unit, or delete it
by pressing the Delete
key.

To select multiple ob-
jects, move the cursor to
the first object, then
press the Spacebar to
select it. Hold the Shift
key down while moving
to the next object.

Press Shift+Spacebar to
select each additional
object. Move the group
using the arrow keys,
then press Enter.

To resize the screen
with the mouse, drag
the lower right corner
where you want it. With
the keyboard, use
Screen Layout... from
the Screen menu.

Quick Start

To enter and edit data, you need a screen. The
Application Generator will create a preliminary one.

Choose Application... from the Run menu, then choose
New. A screen needs a database to work with, so choose
File List, then select and open CUSTOMER.DBF from the
TUTORIAL subdirectory.

The application generator suggests a name for the new
screen in the bottom half of the dialog, Step 2, so just
choose Create to accept it. To see the screen, choose
Modify. This quick screen contains all the fields in the
database, labeled with the field names.

CUSTOMER

Cno 1: cn
Company 2! COMPANY.......ovverunnennennnnnn
Contact 3: contact..........
Address 4! address...........ooeunnnnn
City 5: city........
State 6:
Zip 7 zi
Phone 8: phone
Ono 9
Ytdpurch 18: ytdp
Lat 11: lat
Long 12: long
.

Fields and text in a screen are objects that can be moved
or deleted, just like in the Report Writer. For a phone
list, all we need is the company, contact and phone fields
and the corresponding text. Delete everything else now.
(Use the instructions next to the screen above.) Delete
the “Company” text object, too, then position the remain-
ing fields as shown in the screen below. (Careful — ob-
jects can be stacked on top of each other.) Now resize the
screen.

CUSTOMER

1: company

Contact 2: contact

2-25

Close the Screen Builder now, then choose Yes when
asked if you want to save it.

This screen needs a program to be useful. FoxPro will
write the program for us. Choose Generate then save
the screen under the suggested name (CUSTOMER.APP).
When FoxPro is done, press any key to see your instant
application.

CUSTOMER

1st Softuare Systems Ltd

Contact Rance Siuren Phone ?713/723-1288

Top > < Prior > < Next > < Bottom > < Search > < Quit > “

Search for:

« OK »

<{Cancel>

2-26

You can look at the records or change the data in them.
The application generator also added a control panel so
that you can move around easily in the database. Choose
Next, Prior and Bottom to see a few records (including
the last one) in the file.

Choose Search then enter 93 in the text box. A dialog
explains that a quick search didn’t find a match. Choose
Search in this dialog for a more thorough search.
FoxPro finds the record of the customer with this ID
(using the CNO field).

Choose Search again and open the popup. By selecting a
different field name, you can search for different things.
Try the contact field and enter Jim as the contact. Case
doesn’t matter here, so you can enter jim, jiM, or
whatever, as long as you spell it right.

Choose Quit when you’re done. The next time you want
to use this application, select Application... on the Run
menu, then select CUSTOMER.APP. It’s that easy!

There’s a whole lot more you can do with screens and
applications. See the FoxPro Getting Started manual for
more practice. Soon you’ll be ready for anything when it
comes to managing your information.

Quick Start

Where Do You Go From Here?

Quick Start

You might want to begin with FoxPro Getting Started
and go through the whole manual. You've already
touched on some of the features covered in the tutorial,
but you can get more practice and spend time learning
about other features.

We haven’t covered mailing labels, but the Label
Designer chapter in the FoxPro User’s Guide provides a
quick explanation of everything you need to know about
creating labels. If you need to create custom labels,
choose Label... from the Run menu, then choose New and
follow the instructions in the manual.

After that, you might want to dip into the Introduction to
FoxPro Power Tools chapter of the FoxPro User’s Guide.
You've already worked with the Screen Builder, RQBE
and the Report Writer, so youll be covering some
familiar topics.

Thanks for choosing Microsoft FoxPro.

2-27

3 Using Files From Other Platforms

FoxPro version 2.5 allows you to create and maintain applications
that run on multiple platforms, such as Windows and MS-DOS. An
application that can run on multiple platforms is a cross platform
application.

There are several different approaches to writing cross-platform
applications in FoxPro, including:

® An approach that automatically runs your MS-DOS
applications in Windows — no changes required

® An approach that automatically takes your application from
one platform and transports it to another — no coding required

® An approach that allows you to transport your application
from one environment to another while maintaining separate
interfaces for your application on each platform and
maintaining cross platform code compatibility

When you develop applications in FoxPro, you can choose to
develop in a character mode environment, such as MS-DOS or UNIX,
or in a graphical environment, such as Microsoft Windows or
Macintosh. There are advantages to developing on each platform
type, but for the most part it’s a matter of personal preference.

Because it’s easy to transport your applications from platform to
platform in FoxPro, you can pick the development platform of your
choice. For example, when two people develop different sections of
one application, one person may prefer to develop in FoxPro for
MS-DOS and the second person may prefer FoxPro for Windows.
With FoxPro’s cross platform capabilities, it is easy to satisfy both
developers by letting them develop on their preferred platforms.
Then, you can transport the files to one platform and combine
them into an application.

With cross platform applications, you can run an application on
multiple platforms and share data with full record locking and
other multi-user capabilities.

Using Files From Other Platforms 3-1

3-2

This chapter describes the methods for developing cross platform
applications so that you can choose the best one for your situation.
It also explains approaches to designing and maintaining cross
platform applications.

The following topics are covered in this chapter:

Running MS-DOS Applications in Windows
Maintaining Your Cross Platform Files
Running Windows Applications in MS-DOS
The Transporter

Choosing a Development Platform

Using Files From Other Platforms

Cross Platform Glossary

Cross Platform Glossary

These cross platform terms are used throughout this chapter:

Cross Platform Applications — Applications that can run on
multiple platforms, such as MS-DOS, Windows, and so on.

Cross Platform Transporter — A FoxPro program that takes
screen, report and label objects created on one platform and
duplicates them on another platform.

Conversion — Upgrading a file to the highest version
available.

Application — Compiled code that you run.

Platform Bracketed Code — Source code that is divided into
sections based on the platform.

Object code — Compiled FoxPro code (.FXPs, .EXEs, and so on).

Source code — Code that you enter or FoxPro generates
(.SPRs, .MPRs, and so on). Source code needs to be compiled to
run.

Controls — Objects in screens that control your application.
These include push buttons, radio button, check boxes, and so
on.

Using Files From Other Platforms 3-3

Running MS-DOS Applications in Windows

Running MS-DOS Applications in Windows

3-4

When you decide to run a character mode MS-DOS application in
the Windows graphical environment, you can choose one of these
three approaches:

1. Run an MS-DOS application as is — no changes required.

2. Use the cross platform Transporter to automatically convert
your MS-DOS screens, reports and labels to the graphical Win-
dows format without affecting the interface in MS-DOS — no code
changes.

3. Build on the files that were transported in Approach 2 by ad-
ding Windows features to your application.

Approaches 2 and 3 add Windows information to the existing MS-
DOS application file in a way that allows you to run the application
independently on each platform. When you run the application
again in MS-DOS, it runs exactly as it did before it was transported.

FoxPro 2.0 screen, report, label, menu and project files are
not compatible with FoxPro 2.5 format. When you first open
one of these types of files, the file is converted to FoxPro 2.5
format with your permission. Compiled programs (.APPs,
.FXPs, and so on) are also not compatible. This section
explains how to run each of these file types.

Using Files From Other Platforms

Running MS-DOS Applications in Windows

The LASER application, found in C:\FOXPRO25\SAMPLE\LASER, is
the example application used throughout this chapter. We've
provided several versions of the LASER application that represent
the different stages of cross platform development. The applica-
tions are located in the following directories:

® C:\FOXPRO25\SAMPLE\LASER\DOSONLY
® C:\FOXPRO25\SAMPLE\LASER\TRANSPRT
® (C:\FOXPRO25\SAMPLE\LASER\CRSSPLAT

The figure below shows the application running in MS-DOS. This
version of the LASER sample application is found in the
C:\FOXPRO25\SAMPLE\LASER\DOSONLY directory. The application
name is LASER.APP.

Laserdisk Library

Title 2081, A Space Odyssey Len 149 46

[RO TE This release contains lots of “making-of " & < Top >

information. In addition, it is a wonderful + < Previous >

transfer. < Next >

¥ < Bottonm >

< Add >

Sides 4 Catalogit CC1168BL Critics < Brouse >

Price 124.95 V.Quality 9 8 < Report >

Year 1968 Acquired B82/17/89 < Quit >
Rating PG-13 Category |Science Fict Studio
[X]1 Digital transfer [1 Closed captioned [1 Subtitled [1 Commentary

[X]1 Digital audio [X]1 Letterboxed [1 Dubbed [X1 Supplements
[X1 Stereo [1 Suitable for kids[1 Silent [X1 CX encoded

[X]1 Surround sound [X1 CAV format [1 Black and white
Finder [2881. A Space Odyssey “ Order | TITLE “

Laser Application Running in MS-DOS
C:\FOXPRO25\SAMPLE\LASER\DOSONLY\LASER.APP

FoxPro 2.5 for MS-DOS and FoxPro 2.5 for Windows create
compatible application (.APP and .FXP) files. An application
compiled on one platform runs on the other. However, some
commands supported in FoxPro for Windows are not

supported in FoxPro for MS-DOS. These commands compile

but generate runtime errors in MS-DOS.

Using Files From Other Platforms 3-5

Running MS-DOS Applications in Windows

Approach 1: Running an MS-DOS Application As Is

If most of your users are running in MS-DOS but you have some
users running in Windows, this approach is probably the best solu-
tion for you because you can run your MS-DOS applications in Win-
dows without changing anything. Character mode FoxPro applica-
tions can be run in the graphical Windows environments without
changing code or rearranging objects.

To run an MS-DOS application in Windows, you must first deter-
mine which of the following file types you are going to run, then
read the appropriate steps:

® Application files (.APP) created using the Project Manager in
FoxPro 2.5 for MS-DOS

® FoxPro 2.0 for MS-DOS compiled code

® Program files (.PRG, .SPR, etc.) created in FoxPro for MS-DOS
versions 2.0 and 2.5

® Executable files ((EXE) created with the FoxPro for MS-DOS
Distribution Kit for versions 2.0 and 2.5

® Applications created in other Xbase products

= FoxPro En
System Edit Database Environment
Lasevdisk Library
Title L FEIEEE R E I T EET Len 149 47
Comments |This release contains lots of “"making-of" * Jop
information. In addition, it is a wonderful [Previous
transfer. hosa &ﬂ]
2] | _Bottom
R T e
Sides 9 Catalog# CCi160L Critics g:s&a
Price 124.95 V.Quality 9 8 mg;&
Year 1968 Acquired 82/172/89 000 Quit
[l pigital transfer [] Closed captioned [] Subtitled [0 Commentary
K pigital audio [{ Letterboxed [J pubbed K Supplements
K stereo [J] Suitable for kids [] Silent [¢cx encoded
K Surround sound [cAv format [0 Black and white
Finder (2001, A Space Odyssey L!_j Order
L=Lasrs\t Record: 47/941 Exclusive | Ins [FZ
MS-DOS Version of Laser Application Running in Windows
C:\FOXPRO25\SAMPLE\LASER\DOSONLY\LASER.APP
3-6 Using Files From Other Platforms

Running MS-DOS Applications in Windows

Running FoxPro 2.5 for MS-DOS Applications

To run a FoxPro 2.5 for MS-DOS application (.APP) in FoxPro for
Windows:

1. Choose Do... from the Program menu.

2. Select the MS-DOS application file and choose Do.

Running FoxPro 2.0 for MS-DOS Applications

Before you run a FoxPro 2.0 for MS-DOS application (.APP) in
FoxPro for Windows, you must rebuild it in FoxPro for Windows.
You must rebuild because the object code format in FoxPro 2.5 has
changed (the object code in FoxPro 2.5 for Windows and FoxPro 2.5
for MS-DOS is identical).

To rebuild the FoxPro 2.0 for MS-DOS application in FoxPro for
Windows:

1. Choose Open... from the File menu then choose the desired
project file and choose Open. A dialog appears asking permis-
sion to convert the 2.0 project to 2.5 format.

FoxPro 2.0 for MS-DOS again. You can, however, open it in
FoxPro 2.5 for MS-DOS. If you don’t want to convert the

0 Once you convert a 2.0 file you will not be able to open it in
project, choose Cancel from the dialog.

2. Choose Yes. This converts only your project to version 2.5 for-
mat. You may be asked permission to relocate the project home
directory.

Choose the Build... push button.
Select Build Application and choose OK.

Choose Yes to save changes to the project file.

S

Choose Build to accept the same file name as the original ap-
plication.

7. Choose Yes to overwrite the existing file.

Using Files From Other Platforms 3-7

Running MS-DOS Applications in Windows

To run the converted application:

1. Choose Do... from the Program menu.

2. Select the MS-DOS application file and choose DO.

Running FoxPro for MS-DOS Program Files

It is easy to run a FoxPro for MS-DOS program file in FoxPro for
Windows. You don’t even need to compile the source code. Just
run the program and FoxPro automatically compiles the source
code:

1. Choose Do... from the Program menu.

2. Select the MS-DOS program file and choose Do.

Running FoxPro for MS-DOS Executable Files

FoxPro for MS-DOS executable files from versions 2.0 and 2.5 must
be rebuilt and turned into an application (.APP) file before you run
them in FoxPro for Windows:

1. Choose Open... from the File menu to open the corresponding
project file. If this project file is in FoxPro 2.0 for MS-DOS for-
mat, a dialog appears asking permission to convert the 2.0
project to 2.5 format.

be able to open it in FoxPro 2.0 for MS-DOS again. You can,
however, open it in FoxPro 2.5 for MS-DOS. If you don’t want

0 Once you convert a FoxPro 2.0 for MS-DOS file, you will not
to convert the project, choose Cancel from the dialog.

2. Choose Yes. This converts only your project to version 2.5 for-
mat. You may be asked permission to relocate the project home
directory.

3. Choose the Build... push button.

4. Select Build Application and choose OK.

3-8 Using Files From Other Platforms

Running MS-DOS Applications in Windows

5. Choose Yes to save changes to the project file.

6. Choose Build to accept the same file name as the original ap-
plication.

7. Choose Yes to overwrite the existing file.

Running Other Xbase Applications

FoxPro can run other Xbase applications. Some applications will
run better than others. In general, the more compatible your code
is with FoxPro, the better your application will run. You must
have the source code from these Xbase applications so that you can
use it to create a project and build a new application. FoxPro can
help to identify errors by using the Project Manager and the error
log.

To run an Xbase application:
1. Choose New... from the File menu.

2. Choose Project then choose New.

3. Add the main program file from the Xbase application. The
main program file is used to start the application.

4. Choose the Build... push button in the Project window.

5. Select Build Application, then choose Build. FoxPro automat-
ically pulls all the associated files into the project.

6. Read the error log file (.(ERR) to see the compilation errors.

7. Fix the errors and rebuild the application.

8. Run the application.

For additional information, refer to the Compatibility topic in the

help file, and the Project Manager chapter in the FoxPro User’s
Guide.

Using Files From Other Platforms 3-9

Running MS-DOS Applications in Windows

3-10

How FoxPro for Windows Runs MS-DOS Applications and Files

ANAAANAANANAAN

There are several differences between character mode (MS-DOS and
UNIX) and graphical (Windows and Macintosh) environments.
FoxPro takes care of these differences for you behind the scenes:

® Fonts — MS-DOS uses a mono-spaced font based on the OEM
(Original Equipment Manufacturer) character set and
Windows uses an ANSI character set with fonts that are often
proportionally spaced. FoxPro for Windows includes a special
font, FoxFont, which mimics the MS-DOS OEM character set.
FoxFont is automatically used when an MS-DOS application is
run in FoxPro for Windows.

® One line high controls — FoxPro for MS-DOS controls do not
match the size of FoxPro for Windows controls. In many
cases, MS-DOS controls are one line high. When an MS-DOS
application is run in FoxPro for Windows, a special one line
high control is used to match the one line high control in

MS-DOS.
Top > MS-DOS buttons E
Previous > running in
Next > i
Bottom > Windows Transpo?ted u
Add > % buttons in
Brouse > Brevious Windows n
xt]
Report 2 Bottom
Quit > = aag) Top E
[__Browse , -
MS-DOS R; :ft ‘ Previous
buttons et —] Next
l —
Browse
A
s Ropor
R t
Qui
Buttons using
Windows
Different Versions of Push Buttons features

Using Files From Other Platforms

Running MS-DOS Applications in Windows

® Half height title bars — All user-defined windows created in
FoxPro for Windows are given a title bar if they include any
of the following clauses: TITLE, FLOAT, ZOOM, MINIMIZE or
CLOSE. The same is not true of FoxPro for MS-DOS
user-defined windows. To reduce the visual differences
between applications in the two environments, a half height
title bar is used for user-defined windows unless the SYSTEM
key word is included or the windows are created with the
FONT clause.

® Box positioning — Boxes are drawn using the box drawing
characters in the FoxFont character set instead of the
Windows box drawing routines.

® Centered popup labels — Popups in FoxPro for MS-DOS are
three lines high and in FoxPro for Windows are approximately
one-and-one-half lines high. FoxPro for Windows
automatically centers the popup in the three lines when you
run a FoxPro for MS-DOS application.

Using Files From Other Platforms 3-11

Running MS-DOS Applications in Windows

Approach 2: Transporting MS-DOS Applications

Approach 2 involves transporting each screen, report and label file
to the Windows platform. The Transporter handles the details for
you and produces a fully functional Windows application. The
Transporter does its best to place objects properly. After all files
have been transported, rebuild the project and run the application.

When FoxPro transports a screen, report or label file from one
platform to another, it creates a duplicate object for every object in
the file then modifies the duplicate object for use on the new plat-
form. This does not involve any code changes. You can use the
Transporter to create a Windows application, but you’ll probably
want to do some fine tuning to make the most of the new environ-
ment.

Transporting is designed for applications developed with the
FoxPro power tools — Screen Builder, Report Writer and Label
Designer.

Transporting MS-DOS Applications Created From a Project

O

3-12

To rebuild the application’s project file:

1. Choose Open... from the File menu then choose the desired
project file and choose Open. If the project was created in
FoxPro 2.0 for MS-DOS, you will be asked whether you want to
convert the 2.0 project file to a 2.5 format.

Once you convert a FoxPro 2.0 for MS-DOS file, you will not
be able to open it in FoxPro 2.0 for MS-DOS again. You can,
however, open it in FoxPro 2.5 for MS-DOS. If you don’t want
to convert the project file, choose Cancel from the dialog.

2. Choose Yes to convert your project file to version 2.5 format.

Using Files From Other Platforms

Running MS-DOS Applications in Windows

== FoxPro
System Edit Database Environment

Laserdisk Library

Len
T
C ts|This release contains lots of "making-of”* + ‘-—"22-'—"
information. In addition, it is a wonderful = Previous
transfer =
=~ Next
Bottom
i‘ides 4 Cataloglt CCE0L Critics —'&""g,m
ice 124.95 V.Quality 9 8 B
i
Year 1968 Acquited (02/17/83 W e SO

Quit
Rating [PG-13_[#] Category Studio

& Digital transfer 7] Closed captioned 7] Subtitled [] Commentary

< Digital audio 1 Letterboxed] Dubbed [X] Supplements

< Stereo] Suitable for kids [] Silent [{ CX encoded

54 Surround sound [X] CAV format {71 Black and white

Finder |2001, A Space Odyssey [#] Order [TITLE [#]
Laser Record: 47/941 Exclusive [fes [[

Laser Application Transported to Windows
C:\FOXPRO25\SAMPLE\LASER\TRANSPRT\LASER.APP

Transporting Screens, Reports and Labels in a Project

Once you've rebuilt the project, you can begin to transport the in-
dividual files contained in the project to the Windows platform.
You may want to transport one file at a time then run the applica-
tion, or you may want to transport several or all of the files and
then run the application. Any files you choose not to transport
will use FoxFont and one line high control objects.

Using Files From Other Platforms 3-13

Running MS-DOS Applications in Windows

Transporting Screens

To transport a screen set in a project:

1.

Select a screen set in the Project window then choose the Edit
button. The Transport dialog appears with information about
the screen.

O

If the screen set was created in FoxPro 2.0 for MS-DOS, the
Transporter automatically converts it to 2.5 format when
you choose Transport and Open. Once a file is converted to
version 2.5 format, you cannot open it again in FoxPro 2.0
for MS-DOS.

3-14

Choose the Transport and Open button to process the screen.
The Transport dialog appears for each screen in the screen set.
After you have transported each screen in the screen set, the
Edit Screen Set dialog appears.

The Transporter creates a duplicate object for each object in the
MS-DOS screen. Each object includes the following information:

® Platform identification

® A unique ID for each object that is the same as the
unique ID for the object’s MS-DOS counterpart

® A timestamp for each object

For more information about the Transport dialog and the
transporting process, refer to the Transporter section in this
chapter.

Choose Edit to see what your screen looks like or choose OK to
return to the Project window.

Using Files From Other Platforms

Running MS-DOS Applications in Windows

Transporting Reports and Labels

FoxPro for Windows can print FoxPro for MS-DOS character mode
reports and labels. Unless you want to use additional fonts and
graphical objects in your reports and labels, there is no reason to
transport your FoxPro for MS-DOS reports and labels to FoxPro for
Windows.

If you want to use fonts and graphical objects in your reports and
labels, follow these steps:

1. Select a report or label file in the Project window then choose
Edit. The Transport dialog appears with information about the
report or labels.

FoxPro automatically converts it to version 2.5 when you
choose Transport and Open. Once a file is converted to

0 If the report or labels were created in FoxPro 2.0 for MS-DOS,
version 2.5, you cannot open it again in FoxPro 2.0.

2. Choose Transport and Open.

3. The report or label file opens in the Report Layout window. If
necessary, you can make some adjustments to your report.

4. Close the Report Layout window.

Transporting Menus

Menus do not require transporting because they do not contain in-
formation specific to one platform. You can open a FoxPro 2.5 for
MS-DOS menu in FoxPro for Windows, make changes, and see them
immediately when you return to FoxPro for MS-DOS. FoxPro 2.0
for MS-DOS menus must be converted to run in FoxPro 2.5.

To convert a FoxPro 2.0 for MS-DOS menu file:

1. Select a menu in the Project window. FoxPro asks whether you
want to convert the menu to version 2.5 format. If you do con-
vert it, you cannot open it again in FoxPro version 2.0.

2. Choose Yes. The menu opens in the Menu Design window.

3. Close the Menu Design window.

Using Files From Other Platforms 3-15

Running MS-DOS Applications in Windows

3-16

Rebuilding Your Application

You must rebuild your application if you change any files as-
sociated with it.

To rebuild an application:

1. Choose the Build... push button in the Project window.
2. Select Build Application and choose OK.
3. Choose Yes to save changes to the project.

4. Choose Build to accept the same file name as the original ap-
plication. Then, choose Yes to overwrite the the existing file.

With Approach 2, transporting an application requires very little
work. FoxPro automatically transports your files without changing
any code. Your application now takes advantage of fonts and other
Windows features.

Once you see the application running, you may want to continue to
Approach 3 to take full advantage of Windows features.

When you edit your files, you can move objects around on the
screen. Object positions are stored separately for each platform so
an adjustment on one platform does not affect the other.

Each object in a file has a timestamp for each platform. When you
edit an object in Windows, the Windows timestamp is updated for
that object. These timestamps are used when you transport to
another platform. For example, if you update a Windows object in
a file and then change to FoxPro for MS-DOS and update the
project, FoxPro realizes that there has been a change to a Win-
dows object and asks if you would like to update the corresponding
MS-DOS object. Timestamps also help FoxPro identify new objects
or changes to code snippets.

Not all changes to an object update the timestamp. Visual chan-
ges such as size, position, and color do not update the timestamp.
For a complete list of changes that cause timestamps to update,
refer to the Transporting Files topic in the help file.

Using Files From Other Platforms

Running MS-DOS Applications in Windows

Approach 3: Taking Full Advantage of Windows Features

We encourage you to use Approach 3 because it allows you to take
full advantage of Windows features. For example, you may want
to add picture bitmaps, picture buttons and spinners to your ap-
plication. Or you may just want to change the fonts or colors of
your objects.

The following Windows features that can be added to a file you
transport to Windows to enhance the application:

® Spinners in screens

® Pictures buttons

® Wallpaper

® Various fonts and font styles
® Icons for minimized windows

® OLE objects

Using Files From Other Platforms 3-17

Running MS-DOS Applications in Windows

System Edit Database Environment

Laserdlsk lerary
2001, A Space Odysse

Year 1968 Critics 8 Durahon 149

Comments
This release contains lots of "making-of'' information. |n addition, it is a
waonderful transfer.

Rating [FG-17#] Cataloght CC1160L
Price 124.95

Category E V.Quality 3

Acquired 02/17/89

Studio |HomeVision |#] gides 4

Digital transfer [] Closed captioned [Subtitled

[Digital audio [Letterboxed []Dubbed

B4 steren [] Suitable for kids [Sitent

B4 Surround sound [<] CAV format [J Commentary
[CX encoded [Black and white Supplements

T -y

2001, A Space Ddyssey E

Laser Record: 47/942 Exclusive J [ins |

Laser Application with Full Windows Features
C:\FOXPRO25\SAMPLE\LASER\CRSSPLAT\LASER.APP

3-18 Using Files From Other Platforms

Maintaining Cross Platform Files

Maintaining Cross Platform Files

Once you've transported your files, you need to consider maintain-
ing your files across platforms. For instance, you must consider
how changes to your application in Windows affect your applica-
tion in MS-DOS, or whether you even want them to affect your ap-
plication in MS-DOS.

This section discusses considerations for maintaining cross plat-
form applications and assumes that you already have a cross plat-
form application.

Maintaining Platform Screens

When developing cross platform screens, you should use the Screen
Builder for code generation. Then, FoxPro can bracket your cross
platform code for you. Bracketing means that FoxPro groups plat-
form specific code using CASE statements so that your application
knows to run the code corresponding to the current platform.

When you use code snippets in your screens, you need to bracket
the code in the snippets yourself when it is specific to one plat-
form. Code bracketing is only necessary when you have Windows-
specific items, such as FONT clauses.

When you use the power tools, FoxPro automatically generates the
code for your screens. If you have a screen that contains objects
from more than one platform, the generated code is bracketed.
When you run the application, only the code pertaining to the cur-
rent platform is executed.

How Screen Objects are Stored

Screen files are tables of records that store information about each
object in a screen. The Transporter creates a duplicate set of
records for the new platform. Then, any changes you make to ob-
jects on one platform are saved in one set of records so the changes
don’t impact the other platform. Each object record contains a
timestamp field.

How Objects are Updated

FoxPro uses a timestamp to determine whether an object has been
updated. When you change an object, FoxPro may update the
object’s timestamp. In general, visual changes such as position,
color, and size do not update the timestamp. Changes that are
made through the object’s dialog or the file’s layout dialog do up-

Using Files From Other Platforms 3-19

Maintaining Cross Platform Files

O

date the timestamp. Changes made to the Setup, Cleanup or Read
Level clauses also update the timestamp.

FoxPro compares the record timestamps of the current platform to
the record timestamps of the platform you are transporting from.
If FoxPro finds any differences, then FoxPro figures out which
platform record has the very latest timestamp. Then, if the plat-
form that contains the record with the latest timestamp is the
platform you are coming from, the Transporter is called. If the
latest timestamp is from the current platform records, FoxPro does
not call the Transporter.

In the Transport dialog, you can indicate whether you want the
change to be reflected on the current platform. You must use the
Transporter to update or partially transport the changed file infor-
mation.

The first time a file is transported, the records that hold
environment information (tables, indexes, and so on) are
also transported. @ Environment changes do not have
timestamps and do not invoke the Transporter.

How Objects are Transported

3-20

As you begin to expand your applications, you need to make sure
that you make changes on all platforms. FoxPro 2.5 knows when
changes have been made to a file on a different platform. A time-
stamp field in the file is updated whenever an object is changed.

When you modify the file after a change has been made to the file
on another platform, FoxPro checks the timestamps. If there is a
difference in any timestamp, FoxPro brings forward the Transport
dialog so that you can do a partial transport. A partial transport
allows you to update only the objects that have different time-
stamps, in other words, only the objects that have changed.

In addition, when you add a new object on another platform,
FoxPro can’t find information about the object on the current plat-
form. FoxPro calls the Transporter and performs a partial
transport to add the new object to the current platform.

Using Files From Other Platforms

Maintaining Cross Platform Files

The following steps lead you through the process of making a
change on one platform then doing a partial transport.

To add an object to a cross platform FoxPro 2.5 for MS-DOS screen:
1. Open the FoxPro 2.5 for MS-DOS screen.

2. Add a new GET field or copy and paste an existing GET field.
3. Save the file.
4. Generate the file.

This file now contains an object for the MS-DOS platform that does
not have a duplicate record on the Windows platform. The code
that is generated, although bracketed, only shows the object in the
MS-DOS code because there isn’t a corresponding record for the new
object on the Windows platform. To create a record so that the
new object appears on the Windows platform, you must modify the
file on the Windows platform and do a partial transport.

To modify the cross platform screen file in FoxPro for Windows:

1. Open the screen file. The Transport dialog appears because
FoxPro knows that the Windows version of this file is missing
the object you just added to the MS-DOS version.

Screen File: laser.scx | Transpoit and Dpen ’

There are objects in this file defined | Open Az ls I
for a platform other than Windows. —

The objects are new to Windows, or more | Eancel '

recently modified than their Windows equivalents.

By transporting this file, you add. update, or
I replace Windows definitions for objects in the file.

Transport Objects From: SS9 ="a SR ¥ (ol jT§ 1

Transport
[Objects New to Windows ! Foot. _]

[X] Objects More Recently Modified
Than Windows Equivalent Objects

[C] All Objects - Replace Existing Definitions

Transport Dialog for a Partial Transport

Using Files From Other Platforms 3-21

Maintaining Cross Platform Files

3-22

2. Choose Transport and Open to add the new object to the Win-
dows version of the screen file. This creates a new record in
the screen file so that when you generate the screen, this object
is included in the code and appears on the screen.

You can also choose to open the file and not add the object by
choosing Open As Is.

3. Choose Generate... from the Program menu. Choose Generate.

At this point, everything in the file has been updated. If you run
the file, you can see the new object on the screen.

When you modify screen files that contain both MS-DOS and Win-
dows records on one platform, FoxPro invokes the Transporter
when you open the file on the other platform.

How to Bracket Code

When you develop in Windows and use code snippets with Win-
dows-specific code (for example, FONT clauses), bracket your code
so that you can transport it to MS-DOS and run it. If you don’t
bracket your code and you try to run your application in FoxPro
for MS-DOS, FoxPro does not give compile errors but it does give
runtime errors.

To bracket a code snippet, use a CASE statement like the following:
DO CASE

CASE _DOS

***pody of MS-DOS code
CASE _WINDOWS

***pody of Windows code

ENDCASE

Because the platform system memory variable is true only when
you are on the corresponding platform, this CASE statement ex-
ecutes the correct code.

Using Files From Other Platforms

Maintaining Cross Platform Files

Code that is generated by FoxPro from a cross platform file is
automatically bracketed. The system memory variables _DOS and
_WINDOWS are used to determine the current platform. They

return a true (.T.) value when you are on the corresponding plat-
form.

If you decide not to use the power tools, then you must bracket
your own code. Any code that is platform specific needs to be
bracketed so that you don’t get runtime errors.

You must also bracket code snippets that are added to screens
when they contain platform specific code. Look at the LASER ap-
plication to see how to bracket code snippets.

How to Generate Exclusive Code

If you do not want your generated code to contain code for both
MS-DOS and Windows, you can specify this in the Generate Screen
dialog.

To generate exclusive code:

1. Open a cross platform screen.

2. Choose Generate... from the Program menu to open the
Generate Screen dialog.

3. Check the DOS Objects Only check box then choose Generate.

Now FoxPro generates platform specific code. You can do the
same in FoxPro for Windows.

Maintaining Cross Platform Reports

FoxPro for Windows can print MS-DOS character mode reports.
Unless you want to add additional fonts and graphical objects to
your reports, there is no reason to transport your FoxPro for MS-
DOS reports to FoxPro for Windows.

Report files are tables of records that store information about each
object. The Transporter creates a set of records for the new plat-
form that match the records from the other platform. With
separate records for each platform in the same file, you can change
the file on one platform without changing it on the other.

Using Files From Other Platforms 3-23

Maintaining Cross Platform Files

Maintaining Cross Platform Labels

Labels can be transported only once. After a label file has been
transported, you must make updates on both platforms to main-
tain cross platform similarities.

FoxPro for Windows can print MS-DOS character mode labels. Un-
less you want to add additional fonts and graphical objects to your
labels, there is no reason to transport your FoxPro for MS-DOS
labels to FoxPro for Windows.

Label files are tables of records that store information about each
object. The Transporter creates a set of records for the new plat-
form that match the records from the other platform.

Maintaining Cross Platform Menus

3-24

Menus do not require transporting because they do not contain in-
formation specific to one platform. You can open a FoxPro 2.5 for
MS-DOS menu in FoxPro for Windows, make changes, and see them
immediately when you return to FoxPro for MS-DOS.

In the following example, platform system memory variables are
used to enable and disable menu options based on platform. The
Environment menu has been coded to enable the Sticky and Ex-
tended Video options and disable the Color Picker... menu option
in the MS-DOS version (in this case, the color picker refers to the
Windows Color dialog). For the Windows version, it is the op-
posite. The Color Picker... option is enabled and Sticky and Ex-
tended Video are disabled. The menu file used in this example is
located in the C:\FOXPRO25\SAMPLE\LASER\CROSPLAT\MENUS
directory.

+ Status Bar
Clock

Color Picker...

Using Files From Other Platforms

Maintaining Cross Platform Files

To create the bracketed code, you need to use a logical expression
with the system memory variables. The code example shown in
the figure on the next page is from the Expression Builder after
you've checked the Skip For... check box in the Prompt Options
dialog. The expression will be true when the user is in MS-DOS.
This code goes with the Color Picker... menu option so that when
_DOS is true (.T.), the option is disabled.

= Prompt Options

Comment: = Expression Builder
—Functions
[String [#] [Math [#] Lo _J
[] shortcut... |Logical [#] [Date [#] Cancel I
U Skip For... [Message. Skip For <explL>:

skipvar or _dos

~_Prompt
\<Status Bar Pr Fields- Variables:
\<Clock Pr > alignme P
\<Extended ¥Yideo P _box L
St\<icky Pr _:nde"_t :
. _Imargin
31 [Color \<Picker... “padvance C
+] |[_pageno N
_pbpage N
From Table: _ _pcolno N|+

FoxPro for Windows Expression Builder
Using the System Memory Variable _DOS

Using Files From Other Platforms 3-25

Running Windows Applications in MS-DOS

Running Windows Applications in MS-DOS

3-26

Running your FoxPro for Windows applications in FoxPro 2.5 for
MS-DOS is simple. However, keep the following in mind:

¢ Not all the code generated in FoxPro for Windows can be run
in FoxPro for MS-DOS. For instance, the FONT clause is not
understood by FoxPro for MS-DOS. Code like this compiles
without any errors but does give runtime errors when you run
the program.

® You must transport screens to the MS-DOS platform. This is
unlike running an MS-DOS application in Windows where you
can run an application without making any changes to the
code or using the Transporter.

To transport Windows application files to FoxPro 2.5 for MS-DOS:

1.
2.

6.
7.

Open the project file that corresponds to your application.

Select a file (screen, report or label) and choose Edit. The
Transport dialog appears.

Choose Transport and Open for each file in the project.

You can choose to transport one file at a time then modify it, or
transport all files before making modifications.

Transporting from the graphical Windows platform to the char-
acter mode MS-DOS platform may have some side effects. The
Transporter has to choose a good placement for objects. It first
has to round off the fractional position and then convert the
objects to the right size.

As long as the files are open, the best approach is to take a
quick look at the files. Make adjustments as necessary.

After all the files have been edited, rebuild the project by choos-
ing Build....

Select Rebuild Application and choose OK.

Run the application.

This procedure creates a cross platform application. The applica-
tion code is bracketed.

Using Files From Other Platforms

Transporter — How Does It Work?

Transporter — How Does It Work?

The primary goal of the Transporter is to transfer records in
project, screen, report and label file tables so that these files func-
tion properly on a new platform. This includes information con-
tained in code snippets. To accomplish this, the Transporter adds
a duplicate set of records to hold the information for the new plat-
form. This added information allows you to make changes to each
platform without affecting the files on the other platform.

The Transporter also does a “best fit” transport to keep applica-
tions looking the same no matter which platform they are running
on. In some situations, FoxPro cannot transfer objects properly or
maintain alignments. The Transporter makes many decisions in-
ternally about each object in a file.

When the Transporter creates an identical record for each object in
the project, screen, report and label files, the records are appended
to the file and marked as either Windows or MS-DOS. When a
change is made to a file, FoxPro checks the current platform and
makes the change only to the records marked for that platform.

Transport Dialog

The Transport dialog is used provide specific information to the
Transporter about how you want your screens, reports and labels
to transport. Controls in the Transport dialog include:

Transport Choose the Transport and Open button to
and Open transport files to the new platform and then open
the files in the corresponding design window.

Cancel Choose Cancel if you decide not to transport the
file. If you have a FoxPro 2.0 for MS-DOS file,
choosing Cancel means that the file will not be
converted.

Transport Select the platform that you are transporting your
Objects From objects from.

Font... Choose Font... to display the Font dialog so that

you can set the default font for the screen, report
for label file.

Using Files From Other Platforms 3-27

Transporter — How Does It Work?

Special Transporter Decisions

3-28

All objects in FoxPro for MS-DOS have a counterpart in FoxPro for
Windows, so few decisions are needed when transporting objects.
FoxPro for Windows objects, however, have many graphical fea-
tures that aren’t supported in MS-DOS and these features require
special attention.

For specific information about decisions made by the Transporter,
refer to the Transporting Files topic in the help file.

Using Files From Other Platforms

Choosing a Development Platform

Choosing a Development Platform

Character Mode MS-DOS Platform

The character mode environment is considered the lowest common
denominator. It is easy to take an application created in character
mode and use it in a graphical environment because every object
in FoxPro for MS-DOS has a corresponding object in FoxPro for
Windows. The reverse is not true. Because a graphical environ-
ment offers more possibilities, there are objects in FoxPro for Win-
dows that are not available in FoxPro for MS-DOS.

Once you develop your application in FoxPro for MS-DOS, you can
either run your application in the Windows version or you can
transport the files so that they become Windows files. These three
ways to run your MS-DOS applications in Windows are discussed
earlier in this chapter.

When you develop an application in a character mode environ-
ment, you can choose the enhancements you want, need or can
afford to put into the cross platform application. The decision you
make will probably depend on the amount of time you have avail-
able, the requirements of your clients, and personal preference.

Graphical Windows Platform

A graphical environment offers many ways to enhance your ap-
plications. You can use bitmap pictures for buttons, wallpaper or
by themselves (for example, logos). You have complete control of
fonts, including size, style and color. You can also add OLE objects,
including video and sound. This makes developing in the Windows
environment very appealing.

There are a few things to remember when transporting to charac-
ter mode environments, including what happens to Windows fea-
tures like fonts, bitmap pictures and OLE objects. In FoxPro 2.5,
the code that is generated using the power tools is bracketed into
platform specific code. FoxPro executes only the necessary code
when you are in Windows or in MS-DOS.

The system memory variables _DOS and _WINDOWS each return a
true (.T.) value when you are on the respective platform. Using a
CASE statement with these system memory variables, FoxPro
brackets the code so that the correct platform version of the files
display on your screen.

Using Files From Other Platforms 3-29

4 Tables
[

This chapter contains the following tables:
¢ File Types and Extensions
® System Capacities
® Control Key Shortcuts

® Table Structures
— .PJX Table (Projects)
— .SCX Table (Screens)
— .FRX Table (Reports)
— .MNX Table (Menus)
— .LBX Table (Labels)

® Other File Structures
— Table File Structure (DBF)
— Memo and General File Structure (.FPT)
— Index File Structure (.IDX)
— Compact Index File Structure (.IDX)
— Compound Index File Structure (.CDX)
— FoxPro 2.0 Project File Structure (.PJX)
— FoxPro 2.0 Screen File Structure (.SCX)
— FoxPro 2.0 Report File Structure (FRX)
— FoxPro 2.0 Label File Structure (.LBX)
— FoxPro 1.x Report File Structure (.FRX)
— FoxPro 1.x Label File Structure (.LBX)
— FoxBASE+ Memo File Structure (.DBT)
— Macro File Format (.FKY)

Tables 4-1

File Types and Extensions

File Types and Extensions

4-2

File Type Extension
Table .DBF
Dynamic Link Library (FoxPro for Windows) .FLL
Memo .FPT
Memo Backup .TBK
FoxBASE+ Style Memo .DBT
Index IDX
Compound Index .CDX
Program .PRG
Compiled Program FXP
Format FMT
Compiled Format PRX
View .VUE
Text TXT
File Backup .BAK
Report FRX
Report Memo .FRT
Label .LBX
Label Memo LBT |
Screen .SCX
Screen Memo .SCT
Generated Screen Program .SPR
Compiled Screen Program .SPX

Tables

File Types and Extensions

File Type Extension
Menu .MNX
Menu Memo .MNT
Generated Menu Program .MPR
Compiled Menu Program ‘ .MPX
Generated Query Program .QPR
Compiled Query Program .QPX
Project PJX
Project Memo PJT
Generated Application APP
Executable Program EXE
Compilation Error File ERR
Memory Variable Save .MEM
Macro Files FKY
Window File WIN
FOXUSER.DBF
Resource Files FOXUSER.FPT
FOXUSER.CDX
rovs b
Configuration File CONFIG.FP
Temporary File .TMP
FoxDoc Reports .DOC
FoxDoc Action Diagrams .ACT
Libraries .PLB

Tables 4-3

System Capacities

System Capacities

System Capacities

FoxPro | o e
Database and Index Files
Maximum # of records per database file 1 billion! 1 billion!
| Maximum # of characters per record 65,500 65,000
Maximum # of fields per record 255 255
Maximum # of databases open at one time 25 225
Maximum # of characters per database field 254 254
| Maximum # of characters per index key (IDX) 100 100
Maximum # of characters per index key (.CDX) 240 240
Maximum # of open index files per database unlimited? unlimited?
Maximum # of open indexes in all work areas unlimited? unlimited2
Field Characteristics
Maximum size of character fields 254 254
Maximum size of numeric (and float) fields 20 20
Maximum number of characters in field names 10 10
Digits of precision in numeric computations 16 16
Memory Variables and Arrays
| Default # of memory variables 256 | 256
Maximum # of memory variables 3,600 __ 65,000
‘Maximum # of arrays 3,600 65,000
Maximum # of elements per array 3,600 65,000
Program and Procedure Files
Maximum # of lines in source program files unlimited unlimited
| Maximum size of compiled program modules® 64K 64K
' Maximum # of procedures per file unlimited unlimited

1'The actual file size (in bytes) cannot exceed 2 gigabytes for single-user or exclusively
opened multi-user .psr files. Shared multi-user .psr files with no indexes or .ipx indexes
cannot exceed 1 gigabyte. Shared multi-user .pgr files with structural .cpx indexes cannot

exceed 2 gigabytes.

’Limited by memory and available file handles. .cox files use only one file handle.
3A program module is one procedurc. A program or application can contain an unlimited

number of program modules.

4-4

Tables

System Capacities

System Capacities

Foxpro | o
Program and Procedure Files
Maximum # of nested DO calls 32 32
Maximum # of READ nesting levels 5 5
Maximum # of structured programming 64 64
commands
Maximum # of procedure arguments 24 24
Report Writer Capacities
Maximum # of objects in a report definition unlimited unlimited
Maximum # of lines in a report definition 255 255
Maximum # of grouping levels 20 20
Window Support
Maximum # of open windows (all types) unlimited? unlimited?
Maximum # of open Browse windows 25 25
Miscellaneous Capacities
Maximum # of characters per character string 64K 2 gigabytes
Maximum # of characters per command line 2,048 2,048
Maximum # of characters per macro subst. line | 2048 2048
Maximum # of open files 99 DOS limit
Maximum keystrokes in keyboard macro } 1024 1024
Maximum fields that can be selected by a SQL | 255 255
SELECT statement :
Color Support

Number of color schemes per color set | 24 24
Maximum # of color sets (in FOXUSER file) unlimited unlimited
Number of colors per color scheme ‘ 10 10
Schemes available for user definition 8 8

Tables

4-5

Control Key Shortcuts

Control Key Shortcuts

4-6

Key Action
Ctrl+A Select All
Ctrl+C Copy selected items to clipboard
Ctrl+D Specify a program to execute
Ctrl+E Replace text and find next occurrence
Ctrl+F Find specified text
Ctrl+G Find next occurrence of specified text
Ctrl+K 7 I;gcate next occurrence of specified record
Ctrl+M Resumé éxecuting a suspended program
Ctrl+Q Exit current edit without saving changes;
Exit dialogs without taking action
TZt;l;R - Redo a text edit“i;lg action you just undid
TtrT+V Paste item from the clipboard
Ctrl+W Exit current edit and save any modifications
Ctrl+X Remove selected items and save on clipboard
¥Ctrl+Z VUrnrd(r) a rtréxt editing action -
Ctrl+F1 Cycle windows
Ctrl+F2 Display Command window
| Ctrl+F7 | Move frontmost window
Ctrl+F8 Size frontmost window
Ctrl+F9 Minimize frontmost window
Ctrl+F10 WZoom frontmost window o

Esc

Exit current edit without saving changes;
Exit dialogs without taking action

Tables

Table Structures

Table Structures

Tables

The tables on the following pages contain the structures of the
project, menu, screen, report and label data files. These tables
show the fields in the data files and the type of information stored
in the fields. The structures of these data files are subject to
change.

4-7

.PJX Table (Projects)

.PJX Table (Projects)

Fields |Type| Header Screen Set Screen Program Menu
NAME1l| M text set name name name name
TYPE| C H S S P M
TIMESTAMP | N s?::;lnfp s::anxfp sttlan:p s‘t;::::p st::fp
OUTFILE| M location 2 output file 1 output file 1
HOMEDIR| M homedir homedir homedir
SETID| N highest id key number nuI:{)er
EXCLUDE| L exclude? exclude? exclude?
MAINPROG | L main? main? main?
ARRANGED| M arrange info
SAVECODE| L saved? o::;::ti:::ly
DEFNAME | L defaulted?
OPENFILES| L open files?
CLOSEFILES | L close files?
DEFWINDS | L define winds?
RELWINDS| L release winds?
READCYCLE| L cycle?
MULTREADS | L multiple?
NOLOCK| L lock?
MODAL| L modal?
ASSOCWINDS | M window list
DEBUG, L debug?
ENCRYPT| L encrypt?
NOLOGO| L show logo?
SCRNORDER | N n?:::ﬁ:r
CMNTSTYLE| N box/asterisk
| OBJREV| N obj rev obj rev obj rev
COMMANDS | M bitmap bitmap bitmap
DEVINFO| M | developer info
somors Ta! Tabel | oyl
OBJECT| M obj code obj code obj code
B CKVAL| N
1Includes normalized path.
4-8 Tables

.PJX Table (Projects)

Query | Report | Label ‘ Library | Format Table Index | File Application
name name name name name name name | name name
Q R B L F D I X Z
time time time time time time time time time
stamp stamp stamp stamp stamp stamp stamp stamp stamp

|

exclude? | exclude? | exclude? | exclude? exclude? | exclude? | exclude? | exclude? always
main?

obj rev obj rev

bitmap | bitmap | bitmap bitmap

symbol | symbol | symbol | symbol | symbol

table table table table table

obj code obj code

|
2Location of the generated code (<Source>, <Project> or path).
Tables 4-9

.SCX Table (Screens)

.SCX Table (Screens)

Fields Type| Screen Workarea Index Relation Text Box Line Group
PLATFORM| C ALL ALL ALL ALL ALL ALL M/W ALL
UNIQUEID| C ALL ALL ALL ALL ALL ALL M/W ALL
TIMESTAMP| N
OBJTYPE| N ALLQ1) ALLQ2) ALL@3) ALL®4) ALL(5) ALL(7) M/W(6) ALL(10)
OBJCODE| N | ALL(vers.) ALL(1-25)* ALL(1-25)* | ALL(1-25)* ALL(0) ALL(3-6) D/U(0-1)
NAME| M | ALL(win.) | ALL file .dbf | ALL file. idx
EXPR| M ALL set skip | ALL idx exp | ALL rel exp | ALL text
VPOS| F ALL ALL ALL M/W ALL obj no
HPOS| F ALL ALL ALL M/W ALL obj ct
HEIGHT| F ALL T ALL ALL M/W
WIDTH| F ALL ALL ALL M/W
STYLE| N |ALL usr/dlg M/W jmod | M/W radius | M/W heriz
PICTURE| M
ORDER| M ALL indx name
UNIQUE| L ALL (=.T.) ALL
COMMENT| M ALL ALL ALL ALL ALL
ENVIRON| L ALL
BOXCHAR| C D/U
FILLCHAR| C D/U
TAG| M | ALLfifle | ALLalias | ALL for exp A';i‘ia':‘“
TAG2| M | D/U footer | ALL tag name | ALL to alias | ATL from
PENRED| N M/W MW M/W
PENGREEN| N M/W M/W M/W
PENBLUE| N M/W M/W M/W
FILLRED| N M/W M/W M/W
FILLGREEN| N M/W M/W M/W
FILLBLUE| N M/W M/W M/W
PENSIZE| N M/W M/W
PENPAT| N M/W M/W
FILLPAT| N M/W M/W
FONTFACE| M M/W M/W
FONTSTYLE| N M/W M/W
FONTSIZE| N M/W M/W
MODE| N M/W M/W M/W
RULER| N M/W ruler
RULERLINES| N M/W line
GRID| L M/W grid
GRIDV| N M/W vert
| GRIDH| N[M/W horiz I
M/W = Macintosh/Windows D/U = MS-DOS/UNIX
*All(1-225) in 32-bit Extended version
This table is continued on page A—12
4-10 Tables

.SCX Table (Screens)

List Textbutn Radiobutn |_Checkbox Getfield Textrgn Popup Picture Spinner Invisiblebtn
ALL ALL ALL ALL ALL ALL ALL M/W M/W ALL
ALL ALL ALL ALL ALL ALL ALL M/W M/W ALL
ALL(11) ALL(12) ALL®13) ALL(14) ALL(15) ALL(15) ALL(16) M/W(17) M/W(Q22) ALL(20)
ALL(2) ALL(1) ALL(1) ALL(1) ALL(0,1) ALL(1) ALL(1) M/W(1) ALL(1)
ALL v name | ALL v name | ALL v name | ALL v name | ALL v name | ALL v name | ALL v name | M/W fieldi M/W v name | ALL v name
ALL frm exp ALL say exp ALL say exp
ALL ALL ALL ALL ALL ALL ALL M/W M/W ALL
ALL ALL ALL ALL ALL ALL ALL M/W M/W ALL
ALL ALL ALL ALL ALL ALL ALL M/W M/W ALL
ALL ALL ALL ALL ALL ALL ALL M/W M/W ALL
ALL(0-4) M/W from type

ALL func ALL func ALL func_|ALL fun/pict| ALL pict ALL func M/W pict file M/W pic ALL pic

ALL ALL ALL ALL ALL ALL ALL M/W M/W ALL
ALL type
min value
max value
M/W M/W M/W M/W M/W M/W M/W M/W
M/W M/W M/W M/W M/W M/W M/W M/W
M/W M/W M/W M/W M/W M/W M/W M/W
M/W M/W M/W M/W M/W M/W M/W M/W
M/W M/W M/W M/W M/W M/W M/W M/W
M/W M/W M/W M/W M/W M/W M/W M/W
M/W M/W M/W M/W M/W M/W M/W
M/W M/W M/W M/W M/W M/W M/W
M/W M/W M/W M/W M/W M/W M/W)
M/W M/W M/W M/W M/W M/W M/W M/W
ALL ALL
ALL ALL
ALL ALL
ALL ALL
ALL ALL

M/W = Macintosh/Windows D/U = MS-DOS/UNIX

This table is continued on page A-13

Tables 4-11

.SCX Table (Continued)

.SCX Table (Continued)

Fields Type Screen | Workarea Index Relation Text Box Line Group |
SCHEME| N D/U D/U D/U ;
SCHEME2| N D/U |
COLORPAIR| C D/U D/U | ‘
LOTYPE| N
RANGELO| M
HITYPE| N
RANGEHI, M
WHENTYPE| N | ALL exp code
WHEN| M ALL
__VALIDTYPE| N | ALL exp code | |
VALID| M ALL | |
ERRORTYPE| N |
ERROR| M |
MESSTYPE| N |
MESSAGE| M !
SHOWTYPE| N | ALL exp code -
SHOW| M ALL |
ACTIVTYPE| N | ALL exp code |
ACTIVATE, M ALL 1
DEACTTYPE| N | ALL exp code | [
DEACTIVATE, M ALL 5]
PROCTYPE| N | ALL exp code ! |
PROCCODE| M ALL i
SETUPTYPE| N | ALL exp code | ‘
SETUPCODE| M ALL - B B
FLOAT| L ALL i 1 - L ‘
CLOSE| L ALL |
MINIMIZE| L ALL |
BORDER| N ALL i
SHADOW| L ALL —]
CENTER| L ALL | - i -
_ REFRESH| L — AL | i [
DISABLED| L - B B
SCROLLBAR| L |
ADDALIAS| 1. ALL B - B
TAB| L |
| INITIALVAL| M |] - - i]
TIALNUM| N | ALL init obj . o S o]
SPACING F | =~ | o MW]
CURPOS| L mw |
M/W = Macintosh/Windows D/U = MS-DOS/UNIX
4-12 Tables

.SCX Table (Continued)

List Textbutn Radiobutn | Checkbox Getfield Textrgn | Popup | Picture | Spinner Invbn
D/U D/U D/U D/U D/U D/U D/U |
D/U D/U D/U [
D/U
ALL exp/code ALL exp/code ALL exp/code | M/W exp/code
ALL 1st elem ALL up lim ALL lo lim M/W lo lim
ALL exp/code ALL exp/code ALL exp/code | M/W exp/code
ALL no elem ALL lo lim ALL hi lim M/W hi lim
ALL exp/code | ALL exp/code | ALL exp/code | ALL exp/code | ALL exp/code | ALL exp/code | ALL exp/code | M/W exp/code | ALL exp/code
ALL ALL ALL ALL ALL ALL ALL when when
ALL exp/code| ALL exp/code | ALL exp/code | ALL exp/code | ALL exp/code | ALL exp/code | ALL exp/code M/W exp/code | ALL exp/code
ALL ALL ALL ALL ALL ALL ALL valid valid
ALL exp/code M/W exp/code
ALL error
ALL exp/code | ALL exp/code | ALL exp/code | ALL exp/code | ALL exp/code | ALL exp/code | ALL exp/code |M/W exp/code | ALL exp/code
ALL ALL ALL ALL ALL ALL ALL
|
I
|
T
|
|
|
! stretch style
center?
ALL | refresh?
ALL ALL ALL ALL ALL ALL ALL | B disabled?
ALL ALL |
ALL 1
ALL |
ALL ALL | |increment val
ALL ALL ALL ALL |
ALL ALL | | space
| |
M/W = Macintosh/Windows D/U = MS-DOS/UNIX
Tables 4-13

.FRX Table (Reports)

.FRX Table (Reports)

Fields Type Report Bandinfo Picture Repfield Text Box
PLATFORM C ALL platform | ALL platform | ALL platform | ALL platform | ALL platform ALL platform
UNIQUEID C ALL uniqueid | ALL uniqueid | ALL uniqueid | ALL uniqueid | ALL uniqueid ALL uniqueid
TIMESTAMP N ,
OBJTYPE N ALL() ALL(9) ALL(17) ALL(8) ALL(S) ALL(7)
OBJCODE N ALL version | ALL TYPE(0-8) | M/W SAY(0) ALL SAY(0) ALL SAY(0) D/U (3-6)
NAME M field
EXPR M ALL group expr. ALL the text | ALL SAY expr.
VPOS F M/W M/W vpos ALL vpos ALL vpos ALL vpos
HPOS F M/W M/W hpos ALL hpos ALL hpos ALL hpos
HEIGHT F ALL page len ALL height M/W height ALL height ALL height ALL height
WIDTH F ALL pg. width M/W width ALL width ALL width ALL width
STYLE M ALL style ALL style
PICTURE M ALL fun/pict.
ORDER M
UNIQUE L
COMMENT M ALL ¢ ALL c t ALL t
ENVIRON L ALL environ?
BOXCHAR C D/U boxchar
FILLCHAR C D/U D/U fillchar
TAG M
TAG2 M
PENRED N M/W M/W M/W M/W
PENGREEN N M/W M/W M/W M/W
PENBLUE N M/W M/W M/W
FILLRED N M/W M/W
FILLGREEN N M/W M/W
FILLBLUE N M/W M/W
PENSIZE N M/W
PENPAT N M/W
FILLPAT N M/W
FONTFACE M M/W M/W
FONTSTYLE N M/W M/W
FONTSIZE N M/W M/W
MODE N M/W M/W M/W M/W
RULER N M/W
RULERLINES N M/W
[crb| L MW
GRIDV| N M/W_
GRIDH| N _ M/W -
FLOAT L ALL float? ALL float? ALL float?
STRETCH I ALL stretch?
STRETCHTOP L M/W M/W M/W
TOP L M/W M/W M/W
BOTTOM L M/W M/W M/W
~ SUPTYPE| N M/W M/W
SUPREST N M/W M/W
NOREPEAT L ALL D/U ALL norepeat
RESETRPT N ALL resetrpt
PAGEBREAK L ALL
COLBREAK L WM
RESETPAGE L ALL
GENERAL N stretch style
SPACING] N o | WM spacing -
This table is continued on page A—16
4-14 Tables

.FRX Table (Reports)

Line Workarea Index Relation Group PDsetup Variable
ALL platform ALL platform ALL platform ALL platform ALL platform D/U ALL platform
ALL uniqueid ALL uniqueid ALL uniqueid ALL uniqueid ALL uniqueid D/U ALL uniqueid

ALL(6) ALL(2) ALL(3) ALL4) ALL(10) D/U (21) ALL(18)
ALL (1-25)* ALL (1-25)* ALL (1-25)*
ALL file .dbf ALL file .idx D/U name ALL var name
ALL idx expr ALL rel expr. ALL expr.
ALL vpos ALL obj num N
ALL hpos ALL obj count
ALL height
ALL width
ALL idx name
ALL unique? ALL release?
ALL t
ALL alias ALL for expr. ALL into alias ALL init expr.
ALL tag name ALL to alias ALL from alias

WM

WM

WM

WM

W/M

WM

wM

WM

WM

*All(1-225) in 32-bit Extended version
This table is continued on page A-17
Tables 4-15

.FRX Table (continued)

.FRX Table (continued)

Fields l Type Report Bandinfo ! Picture Repfield Text Box
| DOUBLE, L center?
SWAPHEADER L D/U
SWAPFOOTER L D/U
EJECTBEFOR L D/U
EJECTAFTER L D/U
PLAIN L D/U
SUMMARY L D/U
ADDALIAS L ALL
| OFFSET N D/U D/U fromtype M/W_ just M/W radius
TOPMARGIN| N D/U — M/W jmod
BOTMARGIN N b/U
TOTALTYPE N ALL total
| RESETTOTAL N ALL reset
RESOID N
| curros| L M/W
| SUPALWAYS L ALL ALL ALL ALL
SUPOVFLOW L ALL ALL ALL ALL
SUPRPOOL N ALL ALL ALL ALL
| SUPGROUP N ALL ALL ALL ALL
SUPVALCHNG L ALL ALL ALL ALL
SUPEXPR M ALL | ALL ALL ALL
M/W = Macintosh/Windows D/U = MS-DOS/UNIX
4-16 Tables

.FRX Table (continued)

Line Workarea Index Relation Group PDsetup Variable
M/W hor/ver

ALL type

ALL reset
ALL
ALL
ALL
ALL
ALL
ALL

M/W = Macintosh/Windows D/U = MS-DOS/UNIX
Tables 4-17

.MNX Table (Menus)

.MNX Table (Menus)

Fields Object Types and Field Data
OBJTYPE N MENUSYSTEM (1) SUBMENU (2) ITEM (3)
i OBJCODE N version
NAME| M menu name pad name
B PROMPT| M prompt
COMMAND| M | command
MESSAGE| M |menu pad message | submenu message item message
PROCTYPE N
PROCEDURE| M global default menu options item
SETUPTYPE N
B SETUP, M procedure
i CLEANTYPE N ‘
CLEANUP| M procedure ’
 MARK| C mark (global) mark (menu) | mark (item) o
KEYNAME, M i key name
KEYLABEL' M key label
SKIPFOR| M o | skip for
NAMECHANGE L changed name? |
NUMITEMS| N number of items ~
| LEVELNAME, C | menu level name | menu level name menu level name
ITEMNUM C item number item number item number
- COMMENT M o o) comment
LOCATION N location of menu
SCHEME N scheme |
4-18 Tables

.LBX Table (Labels)

.LBX Table (Labels)

The structure of label tables (.LBX) is the same as that of report
tables (.FRX).

Tables 4-19

Table File Structure (.DBF)

Table File Structure (.DBF)

4-20

A table file is made up of a header record and data records. The
header record defines the structure of the table and contains any
other information related to the table.

zZero.

The data records! follow the header (in consecutive bytes) and
contain the actual text of the fields.
bytes) is determined by summing the defined lengths of all fields.

Numbers in this file are represented in reverse bytes.

It starts at file position

The length of a record (in

Table Header Record
Bytes Description
00 Type of data file:
FoxBASE+ /dBASE III PLUS®, no memo — 0x03
FoxBASE+/dBASE III PLUS, with memo — 0x83
FoxPro/dBASE 1V, no memo — 0x03
FoxPro with memo — 0xF5
dBASE IV with memo — 0x8B
01-03 Last update (YYMMDD)
04-07 Number of records in file
08-09 Position of first data record
10-11 Length of one data record (including delete flag)
12-31 | Reserved
32-n Field subrecords?
n+1 i Header record terminator (0x0D)

Tables

Table File Structure (.DBF)

Field Subrecords®

Bytes Description

00-10 Field name (maximum of 10 characters — if less
than 10 it is padded with null character (0x00))

Data Type:
11 C — Character

N — Numeric
L - Logical
M - Memo
G — General
D — Date
F — Float
P — Picture

12-15 Displacement of field in record

16 Length of field (in bytes)

17 Number of decimal places

18-32 Reserved

Notes to Data File Structure

1The data in the data file starts at the position indicated in bytes
08-09 of the header record. Data records begin with a delete flag
byte. If this byte is an ASCII space (0x20) the record is not
deleted; if the first byte is an asterisk (0x2A) the record is deleted.
The data from the fields named in the field subrecords follows the
delete flag.

2The number of fields determines the number of field subrecords.
There is one field subrecord for each field in the table.

3See the System Capacities table in this appendix for limitations on
characters per record, maximum fields, etc.

Tables 4-21

Memo and General File Structure (.FPT)

Memo and General File Structure (.FPT)

4-22

Memo files contain one header record and any number of block
structures. The header record contains a pointer to the next free
block and the size of the block in bytes. The size is determined by
the SET BLOCKSIZE command when the file is created. The header
record starts at file position zero and occupies 512 bytes.

Following the header record are the blocks that contain a block
header and the text of the memo. The table file contains block
numbers that are used to reference the memo blocks. The position
of the block in the memo file is determined by multiplying the
block number by the block size (found in the memo file header
record). All memo blocks start at even block boundary addresses.
A memo block can occupy more than one consecutive block.

Memo Header Record

Byteé] Description
00-03 Location of next free block!

04-05 Unused
06-07 Block size (bytes per block)!
08-511 | Unused

Memo Block Header and Memo Text

Block signature! (indicates type of data in block):
00-03 a. 0 — picture (picture field type)
b. 1 — text (memo field type)

04-07 | Length! of memo (in bytes)

08-n Memo text (n = length)

!Number represented in left-to-right order in hexadecimal.

Tables

Index File Structure (.IDX)

Index File Structure (.IDX)

Index files contain one header record and one or many node
records. The header record contains information about the root
node, the current file size, the length of the key, index options and
signature, and printable ASCII representations of the key1 and FOR
expressions. The header record starts at file position zero.

The remaining node records contain an attribute, number of keys
present and pointers to nodes on the left and right (on the same
level) of the current node. They also contain a group of characters
encompassing the key value and either a pointer to a lower level
node or an actual table record number. The size of each record
that is ouput to file is 512 bytes.

An example of an ordered tree structure follows the tables.

Index Header Record

Byte Description

00-03 ' Pointer to root node

04-07 Pointer to free node list (-1 if not present)

08-11 Pointer to end of file (file size)

12-13 Length of key

14 Index options (any of the following numeric values
or their sums):

a. 1 — a unique index

b. 8 — index has FOR clause

15 Index signature (for future use)

16-235 Key expression (uncompiled; up to 220 characters)!-3

FOR expression (uncompiled; up to 220 characters
236-455 . -
ending with null byte)

456-511 Unused

4-23

Index File Structure (.IDX)

Index Node Record

Byte Description

00-01 Node attributes (any of the following numeric values
or their sums):

a. 0 — index node

b. 1 — root node

c. 2 — leaf node

02-03 Number of keys present (0, 1 or many)

04-07 Pointer to node directly to left of current node
(on same level; -1 if not present)

08-11 Pointer to node directly to right of current node
(on same level; -1 if not present)

12-511 Up to 500 characters containing the key value for the
length of the key with a four-byte hexadecimal number
(stored in normal left-to-right format):
If the node is a leaf (attribute = 02 or 03) then the
four bytes contain an actual table number in
hexadecimal format — else the 4 bytes contain an
intra-index pointer.
The key/four-byte hexadecimal number combinations
will occur the number of times indicated in bytes 02-03.

IThe type of the key is not stored in the index. It must be deter-
mined by the key expression. .

2Anything other than character strings, numbers used as key
values, and the four-byte numbers in the leaf node are repre-
sented in reversed bytes (Intel 8086 format).

3Numbers are a special case when used as a key. They are con-

verted through the following algorithm so they can be sorted using

the same ASCII collating sequence as characters:

a. Convert the number to IEEE floating point format.

b. Swap the order of the bytes from Intel 8086 order to left-to-
right order.

c. If the number was negative, take the logical complement of the
number (swap all 64 bits, 1 to 0 and 0 to 1) else invert only
the leftmost bit.

4-24 Tables

Index File Structure (.IDX)

Example of an Ordered Tree Structure

Finding a key in the structure below requires searching a single
path between the root and leaf nodes. Nodes at the lowest level
are leaf nodes. Because the keys are sorted, all keys in the sub-
tree are less than or equal to the parent node.

Root node

Pointer to left node ‘ F.H ‘ —— Pointer to right node

/ -
C,F T—"% | t-1—| —— Index node
G Ao ool bEr | L] e 1

l

Leaf nodes

In the illustration above, the letters are used as the key values.
Each key would also have a four-byte hexadecimal number. The
numbers associated with the keys in the leaf nodes would be ac-
tual table numbers — all keys in other nodes would have intra-
index pointers associated with them.

Bytes 12-511 in the index node records could be viewed as follows:

Key Length (in bytes) 4 bytes
|

\
1 I |

Byte 12 of record —— Key value hex
number
hex
K 1
ey vatue number
hex
K 1
ey vatue number

(continues...)

The key value/hexadecimal number combination occurs in bytes
12-511 n times where n is the number of keys present.

Tables 4-25

Compact Index File Structure (.IDX)

Compact Index File Structure (.IDX)

Compact Index Header Record

Byte Description
00-03 Pointer to root node

04-07 Pointer to free node list (-1 if not present)

08-11 Reserved for internal use

12-13 Length of key

14 Index options (any of the following numeric values
or their sums):

a. 1 — aunique index

b. 8 - index has FOR clause

c. 32 — compact index format

d. 64 — compound index header

15 Index signature
16-19 Reserved for internal use
20-23 Reserved for internal use
24-27 Reserved for internal use
28-31 Reserved for internal use
32-35 Reserved for internal use

36-501 Reserved for internal use

502-503 | Ascending or descending:
a. 0 = ascending
b. 1 = descending

504-505 Reserved for internal use

506-507 | FOR expression pool length1

508-509 Reserved for internal use

510-511 | Key expression pool leng,“ch1

512-1023 | Key expression pool (uncompiled)

This information tracks the space used in the key expression pool.

4-26 Tables

Compact Index File Structure (.IDX)

Compact Iindex Interior Node Record

Byte Des;fiptibn

00-01 | Node attributes (any of the following numeric values
or their sums):

a. 0 — index node

b. 1 — root node

c. 2 — leaf node

02-03 Number of keys present (0, 1 or many)

04-07 Pointer to node directly to left of current node
(on same level; -1 if not present)

08-11 Pointer to node directly to right of current node
(on same level; -1 if not present)

12-511 Up to 500 characters containing the key value for the
length of the key with a four-byte hexadecimal number
(stored in normal left-to-right format):
This node always contains the index key, record
number and intra-index pointer.
The key/four-byte hexadecimal number combinations
will occur the number of times indicated in bytes 02-03.

Tables 4-27

Compact Index File Structure (.IDX)

4-28

Compact Index Exterior Node Record

Byte Description

00-01 Node attributes (any of the following numeric values
or their sums):

a. 0 — index node

b. 1 — root node

c. 2 —leaf node

02-03 Number of keys present (0, 1 or many)

04-07 Pointer to node directly to left of current node
(on same level; -1 if not present)

08-11 | Pointer to node directly to right of current node
(on same level; -1 if not present)

12-13 Available free space in node

14-17 Record number mask
18 Duplicate byte count mask
19 Trailing byte count mask
20 Number of bits used for record number
21 Number of bits used for duplicate count
22 Number of bits used for trail count o
N 23 Number of bytes holding rrecord number, duplicate count

and trailing count

24-511 Index keys and information?

2Each entry consists of the record number, duplicate byte count
and trailing byte count, all compacted. The key text is placed
at the logical end of the node, working backwards, allowing
for previous key entries.

Tables

Compound Index File Structure (.CDX)

Compound Index File Structure (.CDX)

Tables

All compound indexes are compact indexes.

One file structure exists to track all the tags in the .CDX file. This
structure is identical to the compact index structure with one ex-
ception — the leaf nodes at the lowest level of this structure point
to one of the tags in the compound index.

All tags in the index have their own complete structure that is
identical to the compact index structure for an .IDX file.

4-29

FoxPro 2.0 Project File Structure (.PJX)

FoxPro 2.0 Project File Structure (.PJX)

Fields |Type| Header Screen Set Screen Program Menu
NAME ! C text set name name name name
TYPE| C H S S P M
TIMESTAMP | N stlan:p sz::l:p stl::?:p sttlan;fp s?an:p
OUTFILE| M location 2 output file 1 output file 1
HOMEDIR| M homedir homedir homedir
SETID| N highest id key number nul:ﬁger
EXCLUDE| L exclude? exclude? exclude?
MAINPROG| L main? | main? main?
ARRANGED| L arranged? |
SAVECODE| L saved?
DEFNAME | L defaulted?
vvvvv OPENFILES| L open files? | N
CLOSEFILE| L close files? } |
DEFWINDS | L define winds? ; ?
RELWINDS | L release winds? 1
READCYCLE| L cycle? | |
MULTREAD | L multiple? ‘
NOLOCK lock? [
MODAL| L modal? 4
ASSOCWINDS| M | window list | N
DEBUG| L debug?
ENCRYPT| L | encrypt?
NOLOGO | show logo? o
SCRNORDER| N n?;:s:r i
SCRNROW | N vpos {
SCRNCOL| N hpos | |
CMNTSTYLE| N box/asterisk | ‘
~ OBJREV| N obj rev obj rev] obj rev
COMMANDS | M bitmap bitmap | bitmap
DEVINFO| M developer . : ;
info
—k Symbel S
OBJECT| M obj code ‘ obj code obj code
CKVAL| N | | |
1Includes normalized path.
4-30 Tables

FoxPro 2.0 Project File Structure (.PJX)

|
Query | Report | Label | Library | Format | Database 6 Index File t Application
name name name name name name name name name
Q R B L F D I x Z
time time time time time time time time time
stamp stamp stamp stamp stamp stamp stamp stamp stamp
exclude? | exclude? exclude? | exclude? exclude? | exclude? exclude? | exclude? always
main?
obj rev obj rev
bitmap | bitmap | bitmap bitmap
symbol | symbol | symbol | symbol | symbol
table table table table table
obj code obj code
2Location of the generated code (<Source>, <Project> or path)
Tables 4-31

FoxPro 2.0 Screen File Structure (.SCX)

FoxPro 2.0 Screen File Structure (.SCX)

Fields Object Types and Field Data
OBJTYPE N SCREEN (1)| WORKAREA (2) | INDEX (3) | RELATION (4) | TEXT (5) BOX (7) GROUP (10)
OBJCODE N version (10) 1-25 1-25 1-25 SAY (0) | BOX/BOX... (3-6)
NAME M window file.dbf file.idx
EXPR| M set skip indexexp relexpr thetext
VPOS N vpos vpos vpos bj! b
HPOS N hpos hpos hpos objcount
HEIGHT N height height height
WIDTH N width width width
STYLE N USR/DLG..
PICTURE, M
ORDER M index name
UNIQUE L current=.T. ique?
COMMENT| M
ENVIRON L environ?
BOXCHAR C boxchar
FILLCHAR C fillchar
TAG M title alias for expr into alias
TAG2] M footer tag name to alias from alias
SCHEME N ch sch I
SCHEME2 N 1
COLORPAIR N col pair col pair
LOTYPE N
RANGELO M
HITYPE N
RANGEHI| M
WHENTYPE N expr/code
WHEN M when
VALIDTYPE N expr/code
VALID M valid
ERRORTYPE N
ERROR M
MESSTYPE N
MESSAGE| M
SHOWTYPE N expr/code
SHOW M show
ACTIVTYPE N expr/code
ACTIVATE M activate
DEACTTYPE N expr/code
DEACTIVATE M deactivate
PROCTYPE N expr/code
PROCCODE, M proc code
SETUPTYPE N expr/code
SETUPCODE M setup code
FLOAT L float?
CLOSE L close?
MINIMIZE L minimize?
BORDER N border
SHADOW L shadow?
CENTER L center?
REFRESH L refresh?
DISABLED L
SCROLLBAR L
ADDALIAS L add alias?
TAB L
INITIALVAL| M
INITIALNUM| N init obj
SPACING N
4-32 Tables

Object Types and Field Data
LIST (11) TEXTBUTN (12) | RADIOBUTN (13) | CHECKBOX (14) | GETFIELD (15) | TEXTRGN (15) | POPUP (16)
GET FROM (2) GET (1) GET (1) GET (1) GET/SAY (1) GET (1) GET (1)
varname varname varname varname varname varname varname
from expr say expr
vpos vpos vpos vpos vpos vpos vpos
hpos hpos hpos hpos hpos hpos hpos
height height height height height height height
width width width width width width width
type (0-4)
function function function func/pict picture __function
type
col pair
expr/code expr/code expr/code
firstelem lower lim firstelem
expr/code expr/code expr/code
1 upper lim 1
expr/code expr/code expr/code expr/code expr/code expr/code expr/code
when when when when when when when
expr/code . expr/code expr/code expr/code expricode expr/code expr/code
valid valid valid valid valid valid valid
expr/code
error
expr/code expr/code expr/code expr/code expr/code expr/code expr/code
refresh?
disabled? disabled? disabled? disabled? disabled? disabled? disabled?
scrollbar?
tab?
init val init val init val init val init val
init numbr init numbr init numbr init numbr init numbr
spacing spacing

Tables

4-33

FoxPro 2.0 Report File Structure (.FRX)

FoxPro 2.0 Report File Structure (.FRX)

Fields

Object Types and Field Data

OBJTYPE

REPORT (1)

BANDINFO (9)

REPFIELD (8)

TEXT (5)

OBJCODE

version (0)

TYPE (0-8)

SAY (0)

SAY (0)

NAME

window

varname

EXPR

group expr

the text

say expr

VPOS

vpos

vpos

HPOS

hpos

hpos

. WIDTH

HEIGHT |

page len

height

page width

height

height

width

width

STYLE

 PICTURE |

_style

style

func/pict

ORDER

UNIQUE

COMMENT

environ?

ENVIRON |

FILLCHAR |

TAG

~ FLOAT

TAG2

" float?

float?

STRETCH

NOREPEAT

RESETRPT

stretch?

norepeat

reset repeat

PAGEBREAK

 SWAPHEADER

RESETPAGE

pagebroak?
reset page?

swap hdr?

EJECTBEFOR

|

SWAPFOOTER

 ejectbef?

swap ftr?

EJECTAFTER

eject aft?

PLAIN

plain?

SUMMARY

summary?

ADDALIAS

add alias?

OFFSET

 TOPMARGIN|

prt offset

top marg

BOTMARGIN

bottom marg

TOTALTYPE

| totalcode |

RESETTOTAL

zZzzzzZrrrorrrrrrrZerrBE000 BN E2RREZZ22ZEE 272

reset code

4-34

Tables

FoxPro 2.0 Report File Structure (.FRX)

Object Types and Field Data

Tables

BOX (7) WORKAREA (2) INDEX (3) RELATION (4) GROUP (10) | PDSETUP (21)
BOX/BOXD...(3-6) 1-25 1-25 1-25
file.dbf file.idx PDSETUP
index expr rel expr
vpos obj number
hpos obj count
height
width
style
index name
unique?
box char
fill char
alias for expr into alias
tag name to alias from alias
float?
4-35

FoxPro 2.0 Label File Structure (.LBX)

FoxPro 2.0 Label File Structure (.LBX)

. Label Line Database | Index | Relations
Field PDSET
elds Type Layout | Contents Info Info Info SETUP
OBJTYPE N LABEL(30) (19) WORKAREA(2) | INDEX(3) | RELATION (4)
OBJCODE| N 1-25 1-25 1-25
NAME remarks data file index PDSETUP
name name
B label index relational
Rl M contents expr expr
STYLE| ™ print
style
HEIGHT| N | label height
WIDTH| N label width
LMARGIN| N left margin
number
NUMACROSS N across
spaces
SPACESBET N between
lines
LINESBET| N between
environment
ENVIRON| L saved?
ORDER| M index name
UNIQUE| L unique?
TAG| M alias for into alias
expr
TAG2| M tag name | to alias | from alias
ADDALIAS| L add alias?
4-36 Tables

FoxPro 1.x Report File Structure (.FRX)

FoxPro 1.x Report File Structure ((FRX)

NOTE: The FRX file structure described here is for FoxPro 1.x
FRX files. The structure of FoxPro 2.0 FRX files is documented
earlier in this appendix.

All records in a report file consist of a fixed number of fields that
are delimited by tabs (0x09). There is one record for each object
type in the report. Each record terminates with a carriage return

(0x0D) and a line feed character (0x0A).
file is represented with ASCII characters.

All information in the

Object Type with Field Values
Field Report Band
Screen (1) Text (5) | Box (7) Field (17) Info (18)
!
1 \ Report Band
0 Screen Text Box Field Info.
9 . 3 Box/BoxD/ Band
1 Version SAY BoxC SAY Type?
9 Resource Actual | Null Field Group
File Name Text | Expr. Expr.
| i
1 .
3 Heading Null | Null Field Null
! Type
|
4 Vertical Vertical } Vertical Vertical Page
Position Position | Position Position Break®
5 Horiz. Horiz. | Horiz. Horiz. Reserved
Position Position Position Position
6 Height Height Height Height Height
7 width | _Wdth of 1 gigen Width
actual text)
Font
8 Null Null Null Null
Name
9 Printer 0x00 Swap
Offset or?’ Header®
Swap
10 Footer™®
Tables 4-37

FoxPro 1.x Report File Structure (.FRX)

Object Type with Field Values
Fizld Screen (1) Text (5) | Box (7) F:?;g ‘()g) I n?:?'? 8)
11 Null
12 Null
13 Null
14 Null
15 Null
16 Null
17 Null Null Null Null
Once
18 Null Null e Null
(0x31)
198 Null o e Toatkiot | Nul
and Stretch
20 Null Null Null 2ohe Null
21 | View File | nun Null nesel Null
22 Null Null Null Null Null
23 User User User User User
Comment | Comment | Comment Comment Comment
o4 User User User User User
Data Data Data Data Data

4-38

NOTE: Shaded cells represent fields that are reserved for future
use. When a field position is reserved, tab delimiters for that
position are present but there are no characters in its placeholder.
If a field is null, only a position holder is present. There are no
characters between the tab delimiters.

Tables

Tables

FoxPro 1.x Report File Structure (.FRX)

Notes to Object Type with Field Values Table
1Object types and their values in the file:

a. Screen = 0x31 d. Band Info = 0x31 and 0x38
b. Text = 0x35 e. Report Field = 0x31 and 0x37
c. Box = 0x37

2SAY/GET values:
a. Single-line box = 0x30 (Box)
b. Double-line box = 0x31 (BoxD)
c. GET (Input) = 0x32 (GET or Box(C)
If the object type is Box, then 0x32 represents a character line
box.
d. SAY (Output) = 0x34 (SAY)

3The current version for character-based reports is “1100”.

4Band types and values when the object type is Band Info:
a. Title = 0x30 ~e. Group Footer = 0x35
b. Page Header = 0x31 f. Page Footer = 0x36
c. Group Header = 0x33 g. Summary = 0x37
d. Detail = 0x34

5Field types:

N — Numeric D — Date
M - Memo L - Logical
C — Character

5When the object type is Band Info and the Band Type is Group
Header, 0 = off and 1 = on. In all other cases, this field is null.

TFont size for a Box object type is 0x30 if it is either a single- or
double-line box. If it is a character box, the binary value of the
character used is shifted eight bits to the left and its value is
placed in the field as base 10-ASCII characters.

8Object type and flag values:

a. Top = 0x30 c¢. Float = 0x33

b. Stretch = 0x31 d. Float and Stretch = 0x34
9Values for Totaling option (ASCII character of number in file):

a. No total =0 d. Average = 3

b. Count =1 e. Minimum = 4

c. Sum total = 2 f. Maximum = 5
10y7alues for Reset Total option (ASCII character of number in file):

a. End of report = 0 c. End of column = 2

b. End of page =1 d. End of group = 3-22

4-39

FoxPro 1.x Label File Structure (.LBX)

FoxPro 1.x Label File Structure (.LBX)

NOTE: The .LBX file structure described here is for FoxPro 1.x
.LBX files. The structure of FoxPro 2.5 .LBX files is the same as
that of .FRX files documented earlier in this appendix.

Label files contain information for one label definition file as
defined by the user. All bytes are stored in Intel 8086 format.

Byte Description
00 Version: 03 = FoxPro label
01-60 Remarks (ASCII characters)
61-62 Height: Number of lines in label
63-64 Left Margin: Column number of left margin
65-66 Width: Width of label
67-68 Number Across: Number of labels across row
69-70 Spaces Between: Number of spaces between labels
71-72 Lines Between: Number of lines between labels
73-74 Length of expression contents
75-n Label Expression Contents: List of expressions in label
separated by carriage returns (0x0D)

4-40

Tables

FoxBASE+ Memo File Structure (.DBT)

FoxBASE+ Memo File Structure (.DBT)

Tables

FoxBASE+ memo files don’t have the versatility of FoxPro memo
files. They can contain only ASCII text data.

Records output to this file in blocks are 512 bytes in size. The
block at file position zero contains the block number of the first
free file position. This block number is stored in the first two
bytes in reverse order (Intel 8086 format). To find the address of
the next free block, multiply the size of a single block (512 bytes)
by the block number.

The blocks that follow the initial block information contain the
text of the memos from the associated table. The memo field in
the table file contains the number of the block in the memo file
that contains the actual text. All memo blocks start on 512 byte
boundary addresses.

4-41

FoxPro Macro File Format (.FKY)

FoxPro Macro File Format (.FKY)

4-42

File Header

Byte Description
01-03 Signature, Hex 79ff

04-15 Ignored

16-17 Number of macros (binary)
18-end The macros

Individual Macros

00-19 Macro name

20-21 Macro length (in keystrokes, binary)
22-23 Keystroke (two bytes, binary)
24-end Macro keystrokes

Tables

	01081465.tif
	01081466.tif
	01081467.tif
	01081468.tif
	01081469.tif
	01081470.tif
	01081471.tif
	01081472.tif
	01081473.tif
	01081474.tif
	01081475.tif
	01081476.tif
	01081477.tif
	01081478.tif
	01081479.tif
	01081480.tif
	01081481.tif
	01081482.tif
	01081483.tif
	01081484.tif
	01081485.tif
	01081486.tif
	01081487.tif
	01081488.tif
	01081489.tif
	01081490.tif
	01081491.tif
	01081492.tif
	01081493.tif
	01081494.tif
	01081495.tif
	01081496.tif
	01081497.tif
	01081498.tif
	01081499.tif
	01081500.tif
	01081501.tif
	01081502.tif
	01081503.tif
	01081504.tif
	01081505.tif
	01081506.tif
	01081507.tif
	01081508.tif
	01081509.tif
	01081510.tif
	01081511.tif
	01081512.tif
	01081513.tif
	01081514.tif
	01081515.tif
	01081516.tif
	01081517.tif
	01081518.tif
	01081519.tif
	01081520.tif
	01081521.tif
	01081522.tif
	01081523.tif
	01081524.tif
	01081525.tif
	01081526.tif
	01081527.tif
	01081528.tif
	01081529.tif
	01081530.tif
	01081531.tif
	01081532.tif
	01081533.tif
	01081534.tif
	01081535.tif
	01081536.tif
	01081537.tif
	01081538.tif
	01081539.tif
	01081540.tif
	01081541.tif
	01081542.tif
	01081543.tif
	01081544.tif
	01081545.tif
	01081546.tif
	01081547.tif
	01081548.tif
	01081549.tif
	01081550.tif
	01081551.tif
	01081552.tif
	01081553.tif
	01081554.tif
	01081555.tif
	01081556.tif
	01081557.tif
	01081558.tif
	01081559.tif
	01081560.tif
	01081561.tif
	01081562.tif
	01081563.tif
	01081564.tif
	01081565.tif
	01081566.tif
	01081567.tif
	01081568.tif
	01081569.tif
	01081570.tif
	01081571.tif
	01081572.tif
	01081573.tif
	01081574.tif
	01081575.tif
	01081576.tif
	01081577.tif
	01081578.tif
	01081579.tif
	01081580.tif
	01081581.tif
	01081582.tif
	01081583.tif
	01081584.tif
	01081585.tif
	01081586.tif
	01081587.tif
	01081588.tif
	01081589.tif
	01081590.tif
	01081591.tif
	01081592.tif
	01081593.tif
	01081594.tif
	01081595.tif
	01081596.tif
	01081597.tif
	01081598.tif
	01081599.tif
	01081600.tif
	01081601.tif
	01081602.tif
	01081603.tif
	01081604.tif
	01081605.tif
	01081606.tif
	01081607.tif
	01081608.tif
	01081609.tif
	01081610.tif
	01081611.tif
	01081612.tif
	01081613.tif
	01081614.tif
	01081615.tif
	01081616.tif
	01081617.tif
	01081618.tif
	01081619.tif
	01081620.tif
	01081621.tif
	01081622.tif

